

South Carolina Department of Health and Environmental Control

Division of Procurement Services

Invitation for Bid

SUBMIT YOUR SEALED OFFER TO EITHER OF THE FOLLOWING ADDRESSES:

Solicitation No.: IFB-37166-11/5/09-EMW

Date Issued: 10/6/09

Procurement Officer: E. Madison Winslow

& Theatin IS if C.

Phone No.: 803-898-3487

E-mail Address: winsloem@dhec.sc.gov

Page No.: 1 of 134

DESCRIPTION: Corrective action for petroleum releases - UST Permit Number 07359, Columbia, SC

USING GOVERNMENTAL UNIT: South Carolina Department of Health and Environmental Control

The Term "Offer" Means Your "Bid" or "Proposal". Your offer must be submitted in a sealed package. Solicitation Number & Opening Date must appear on package exterior. See "Submitting Your Offer" provision.

PHYSICAL ADDRESS: SC DHEC – Division of Procurement Services Bureau of Business Management 2600 Bull Street, Room 1200 – Aycock Bldg. Columbia, S.C. 29201
er 5, 2009/2:30pm ET (See "Deadline For Submission Of Offer" provision) 1, 2009/5:00 pm ET (See "Questions From Offerors" provision)
1) original
LOCATION: N/A
12, 2009. The award, this solicitation, any amendments, and any following web address: http://www.scdhec.gov/procurement
Offer. By submitting a bid or proposal, You agree to be bound by fer open for a minimum of thirty (30) calendar days after the and "Electronic Signature" provisions.)
Any award issued will be issued to, and the contract will be formed with, the entity identified as the Offeror. The entity named as the offeror must be a single and distinct legal entity. Do not use the name of a branch office or a division of a larger entity if the branch or division is not a separate legal entity, i.e., a separate corporation, partnership, sole proprietorship, etc.
TAXPAYER IDENTIFICATION NO.
ror.) (See "Taxpayer Identification Number" provision)
STATE VENDOR NO.
(Register to Obtain S.C. Vendor No. at www.procurement.sc.gov)
IED STATE OF INCORPORATION
(If you are a corporation, identify the state of incorporation.)
(See "Signing Your Offer" provision.)
Other Government entity (federal, state, or local)

PAGE TWO

(Return Page Two with Your Offer)

		(IXCIUITI Tage	I WO WILL I TOUL	Oner			
HOME OFFICE ADDRESS (principal place of business)	Address for offeror	s home office /		DDRESS (Address thould be sent.) (See "		rement and contract	
	· :		Area Code - N	umber - Extension	Facsim	ile	
			E-mail Address				
PAYMENT ADDRESS (Addre (See "Payment" clause)	ess to which paymer	nts will be sent.)		DRESS (Address to Orders and "Contract			
Payment Address same as H Payment Address same as N				ldress same as Hon ldress same as Noti			
ACKNOWLEDGMENT OF Offerors acknowledges receipt of am	AMENDMENT endments by indicate	S ing amendment nur	nber and its date	of issue. (See "Amen	dments to Solicita	tion" Provision)	
Amendment No. Amendment Issue Date	Amendment No.	Amendment Issue Date	Amendment No	. Amendment Issue Date	Amendment No.	Amendment Issue Date	
DISCOUNT FOR PROMPT PAYMENT (See "Discount for Prompt Payment" clause)	Calendar Days (%)	20 Calenda	ar Days (%)	30 Calendar Days	(%)	Calendar Days (%)	
PREFERENCES - SC RESIDENT VENDOR PREFERENCE (June 2005): Section 11-35-1524 provides a preference for offerors that qualify as a resident vendor. A resident vendor is an offeror that (a) is authorized to transact business within South Carolina, (b) maintains an office* in South Carolina, (c) either (1) maintains a minimum \$10,000.00 representative inventory at the time of the solicitation, or (2) is a manufacturer which is headquartered and has at least a ten million dollar payroll in South Carolina, and the product is made or processed from raw materials into a finished end-product by such manufacturer or an affiliate (as defined in Section 1563 of the Internal Revenue Code) of such manufacturer, and (d) has paid all assessed taxes. If applicable, preference will be applied as required by law. OFFERORS REQUESTING THIS PREFERENCE MUST INITIAL HERE. *ADDRESS AND PHONE OF IN-STATE OFFICE *In-State Office Address same as Home Office Address (check only on the control of the same and the product is made or processed from raw materials into a finished end-product by such manufacturer or an affiliate (as defined in Section 1563 of the Internal Revenue Code) of such manufacturer, and (d) has paid all assessed taxes. If applicable, preference will be applied as required by law.							
PREFERENCES - SC/US END-PRODUCT (June 2005): Section 11-35-1524 provides a preference to vendors offering South Carolina end-products or US end-products, if those products are made, manufactured, or grown in SC or the US, respectively. An end-product is the item identified for acquisition in this solicitation, including all component parts in final form and ready for the use intended. The terms made, manufactured, and grown are defined by Section 11-35-1524(B). By signing your offer and checking the							

appropriate space(s) provided and identified on the bid schedule, offeror certifies that the end-product(s) is either made, manufactured or grown in South Carolina, or other states of the United States, as applicable. Preference will be applied as required by law.

OFFERORS REQUESTING THIS PREFERENCE MUST CHECK THE APPROPRIATE SPACES ON THE BIDDING SCHEDULE.

I. SCOPE OF WORK

A. DEFINITIONS:

For the purposes of this contract the following terms and definitions shall apply:

- 1. <u>Chemicals of Concern (CoC)</u>: Specific petroleum constituents that are identified for monitoring and corrective action.
- 2. <u>Corrective Action Completion Time</u>: The time in months, submitted by the Contractor, necessary to reduce CoC concentrations to below SSTLs, verify attainment of the goals, and remove and/or properly abandon assessment and corrective action equipment and components (wells, treatment lines, etc.).
- 3. <u>Corrective Action Plan (CAP)</u>: A document outlining and detailing proposed corrective actions containing a timetable consistent with the Corrective Action Completion Time submitted by the contractor.
- 4. <u>Corrective Action System Startup Date</u>: The date on which the Contractor initiates full time treatment operations or initiates injection into or extraction from the subsurface.
- 5. <u>Free-Phase Product (FPP)</u>: Petroleum lighter than water non-aqueous phase liquid (LNAPL) identified for monitoring and corrective action.
- 6. <u>Liquidated Damages</u>: Costs over and above the pre-approved amount that are incurred by the Department in order to complete the corrective action as specified in this document in the event of a breach of contract by the contractor resulting in termination of the contract.
- 7. <u>Site Incentive Period</u>: The period of time in months established by the SCDHEC during which the contractor must achieve the corrective action goals (see Contract Item II.A.9.c) in order to qualify for the Early Completion Incentive.

B. SOLICITATION STATEMENT

The Underground Storage Tank (UST) Management Division of the South Carolina Department of Health and Environmental Control (SCDHEC) is seeking services to perform active corrective action of a petroleum release at a regulated underground storage tank site in accordance with defined remediation goals. The objective is to prevent significant further migration of FPP and CoC, to remove measurable (0.01') thicknesses of FPP, and to reduce the concentrations of CoC in the soil and groundwater to at or below site-specific target levels (SSTLs) established by SCDHEC. All offerors must be South Carolina Certified Class I Site Rehabilitation Contractors.

C. SCHEDULE OF DELIVERABLES

The following table summarizes the deadlines for deliverables associated with this contract:

DELIVERABLE DUE	DEADLINE
Questions	By 5:00 p.m. ET, 10/21/09
Sealed Bids	By 2:30 p.m. ET, 11/5/09
Corrective Action Plan	30 days from date of award
Initial Monitoring Report	45 days from date of award
CAP Implementation	30 days from Notice to Proceed
Creaton Ctout II.	15 days from receipt of Permit to Operate and
System Start Up	CAP Notice to Proceed
Notify Project Manager of Gauging	At least 2 weeks prior to gauging event
Corrective Action System Evaluation	Quarterly from date of system start up
Report	
Abandon and/or Remove Assessment	
and Corrective Action Equipment and	Within 60 days from notice by SCDHEC
Components	·

D. SITE-SPECIFIC INFORMATION

The scope of work defined in this solicitation is to be implemented at Former Columbia Maintenance Facility, 3736 Marsteller St., Columbia, SC, UST Permit #07359, for the release reported on December 30, 1991.

II. CONTRACTUAL REQUIREMENTS

A. GENERAL REQUIREMENTS

- 1. CONTRACT PERIOD: The contract will be effective from date of award until the corrective action is complete as described in this contract.
- 2. EQUAL OPPORTUNITY EMPLOYMENT: Contractor must agree to make positive efforts to employ women, other minorities, and minority-owned businesses.
- 3. AMENDMENTS: All amendments to this solicitation shall be in writing from the SCDHEC Procurement Officer indicated on page one of this solicitation. SCDHEC shall not be legally bound by any amendment, interpretation or settlement that is not in writing.
- 4. RESTRICTION . . . THE ONLY OFFICIAL CONTACT PERSON AT SCDHEC DURING THE SOLICITATION AND AWARD OF THIS CONTRACT IS THE PROCUREMENT OFFICER INDICATED ON PAGE 1 OF THIS SOLICITATION. OFFERORS ARE NOT TO CONTACT ANY OTHER SCDHEC PERSONNEL LOCATED OUTSIDE THE BUREAU OF BUSINESS MANAGEMENT.
- 5. AWARD: Award will be made to a South Carolina Certified UST Site Rehabilitation Contractor based on the Corrective Action Cost (Contract Item IV.B.3), method(s), and Corrective Action Completion Time for the site listed. For a bid to be considered responsive, the proposed implementation schedule and the proposed remediation technology(ies) or method(s) for active corrective action to achieve the remediation goals must be protective of public health and the environment and be eligible for permitting by SCDHEC. The total cost, methods, and time to complete the contract must be advantageous to the State of South Carolina.
 - a. The Corrective Action Completion Time shall be determined by the offeror and entered into the Corrective Action Solicitation Response (Contract Item IV.B.)
 - 1) Time is of the essence in completing the site work to restore the aquifers and protect human health and the environment. Therefore, offerors are encouraged to strive for efficient remediation methods and to propose the shortest practical time for the completion of this site.
 - 2) Award of the contract, if made, will be made to the responsible and qualified offeror who submits a responsive bid with the lowest Corrective Action Cost. In the event that two or more bidders submit the lowest Corrective Action Cost, the award, if made, will be decided in accordance with the Tie Bids procedure in Section B. (6) of the Underground Storage Tank Environmental Remediation Procedures. SCDHEC reserves the right to request additional information to clarify the feasibility of the proposed remediation technology(ies) or method(s) for corrective action included in the bid.

- 3) The contractor shall enter the number of months in the space provided in the Corrective Action Solicitation Response.
- 6. REASONABLE COST: SCDHEC reserves the right to reject any and all bids that appear to be above customary and reasonable cost for the same scope of work in a similar geologic setting, that propose technologies that cannot be permitted in South Carolina, or that propose time frames for cleanup that are not protective of human health or the environment. SCDHEC reserves the right to request additional information to clarify the feasibility of the proposed remediation technology(ies) or method(s) for corrective action included in the bid.
- 7. SITE WORK VERIFICATION: The contractor will be required to treat the area of concern shown in the Appendix. Verification that interim corrective action goals have been achieved will be based upon gauging results from all wells and sampling points listed in the Appendix, and upon sampling results from SSTL wells and sampling point listed in the Appendix. Verification that final corrective action goals have been achieved will be based upon sampling results from all wells and sampling points listed in the Appendix, and additional verification wells to be installed at locations and depths designated by SCDHEC (See Contract Item III.B.10 for more details). It is understood that seasonal fluctuations in FPP thicknesses and CoC concentrations will occur over time. It is the intent of this corrective action to prevent further degradation of the aquifer(s) by continued migration of FPP and CoC into areas not previously impacted. If the corrective action allows FPP and CoC to migrate and impact areas beyond the area of concern, the Contractor will be responsible for completing assessment activities necessary to re-define the area of concern and for providing amendments to their Corrective Action Plan addressing the additional impacted area(s).
- 8. REPORTS: Deliver one electronic copy of each plan or report to: SCDHEC, Bureau of Land and Waste Management, UST Management Division, 2600 Bull Street, Columbia, SC 29201. The copy should be submitted on compact disc (CD) containing entire report in Personal Data Format (PDF) and all data tables in MS Excel or comparable format. A copy of each plan or report must be delivered to each party on the Distribution List included in the Appendix. The copies may be paper or electronic as agreed upon by the affected party and the Contractor. Based upon permitting and other requirements, additional copies of plans or reports may be required by the SCDHEC. The SCDHEC will notify the Contractor of the exact number of copies of each document to be submitted.
- 9. INVOICING: Invoices will be submitted to: SCDHEC, Bureau of Land and Waste Management, UST Management Division, ATTN: Financial Section, 2600 Bull Street, Columbia, SC 29201, using the SCDHEC Corrective Action (CA) Invoice form. The initial invoice must be received at the above address within four months of CAP approval or funds will be uncommitted as required by the Section 44-2-40(B) of the SUPERB Act. If funds are uncommitted, the submitted invoice will be held until funding is available. Payment will only be made for achieving corrective action goals as specified below. No partial payments will be made once corrective action is initiated, except as outlined in Contract Item III.B.3. Payment to the contractor will be on a pay-for-performance basis as follows:
 - a. Payment of 40% of the total Corrective Action Cost will be made within 90 days following receipt of an invoice and documentation that the contractor has completed the Corrective Action System Startup. All corrective action activities must be as described in the CAP and are subject to the limitations of Section 44-2-40 of the SUPERB Act. The implementation

should be documented in the first corrective action system evaluation (CASE) report. The first CASE report must include the construction logs for all treatment/recovery wells installed in accordance with the CAP.

- b. Payment of 40% of the total Corrective Action Cost will be made based on achieving interim FPP thickness reduction goals as verified in all wells and sampling points listed in the Appendix, and on achieving CoC concentration reduction goals as verified in the SSTL wells and SSTL sampling points listed in the Appendix. Payments will be made upon receipt of invoices and documentation that the contractor has achieved interim goals of FPP removal followed by 60, 90 and 100% reduction of total CoC concentration above the SSTLs by the implementation of corrective action. The FPP thicknesses, CoC concentrations, and SSTLs are listed in the Appendix.
 - 1) The interim FPP removal goal will be achieved when the FPP thickness does not exceed 0.01' in all wells and sampling points listed in the Appendix, and at any point in the area of concern. Payment of 10% of the total Corrective Action Cost will be made upon verification that the interim FPP removal goal has been achieved. Achievement of this interim goal must be confirmed by gauging conducted by SCDHEC. The gauging will be conducted a minimum of one month after the conclusion of FPP removal activities.
 - 2) The first interim concentration reduction goal will be achieved when 60% of the total CoC concentration above SSTLs in the SSTL wells and SSTL sampling points listed in the Appendix is removed. The following formula will be used to calculate the percent total concentration reduction: total concentration above SSTLs from initial sampling less total concentration above SSTLs from subsequent sampling divided by total concentration above SSTLs from initial sampling. Payment of 10% of the total Corrective Action Cost will be made upon confirmation by CASE report or upon verification (see Contract Item III.B.10 for the method of verification) that at least 60% of the total CoC concentration above SSTLs is removed.

The following is an example to demonstrate the CoC concentration reduction calculation:

Well			Benzene	Toluene	Ethylbenzene	Xylene	MTBE	Naphthalene	Conc>SSTL
MW-1	Initial	Α	7,500	4,000	2,000	15,000	3,000	1,000	A
	SSTL	В	10	2,000	1,400	10,000	80	50	West State B
	Initial > SSTL	С	7,490	2,000	600	5,000	2,920	950	18,960 ^C
	Subsequent	D	3,000	1,000	900	13,000	2,000	5	P P
	SSTL	Е	10	2,000	1,400	10,000	80	50	E 1 /// E
	Subsequent > SS	ΓL^{F}	2,990	0	0	3,000	1,920	0	7,910 ^F
MW-4	Initial	G	150	400	50	250	300	25	
	SSTL	Н	5	400	50	250	40	25	Н
	Initial > SSTL	I	145	.0	0	0	260	0	405 ^I
	Subsequent	J	100	100	1	1	100	1	. 1
	SSTL	K	5	400	50	250	40	25	. К

SOUTH CAROLINA DEPARTMENT OF HEALTH AND ENVIRONMENTAL CONTROL IFB-37166-11/5/09-EMW

	Subsequent> SSTL ^L	95	0	0	0	60	0	155 ^L
Totals	Initial > SSTL M	(sum of	(sum of initial concentration above SSTL for all wells) (C+I)				19,365 ^M	
	Subsequent> SSTL ^N	(sum of	(sum of subsequent concentration above SSTL for all wells) (F+L)				8,065 N	

Notes: If subsequent sampling indicates a CoC concentration at or below the SSTL and/or a CoC concentration at BDL but the reporting limit is at/or below the SSTL value for any constituent, the value for the concentration reduction will be 0 (no negative numbers). If subsequent sampling indicates a CoC concentration at BDL but the reporting limit is above the SSTL, the value for any constituent will be the analytical reporting limit.

CoC Concentration Reduction =
$$(M-N) = (19,365-8,065) = 0.5835 * 100 = 58.35\%$$

(M) $(19,365)$

- 2) The second interim concentration reduction goal will be achieved when 90% of the total CoC concentration above SSTLs in the SSTL wells and SSTL sampling points listed in the Appendix is removed. The formula outlined in Contract Item II.A.9.B.1 will be used. Payment of 10% of the total Corrective Action Cost will be made upon verification (see Contract Item III.B.10 for the method of verification) that at least 90% of the total CoC concentration above SSTLs has been removed. Achievement of this interim goal must be confirmed by split sampling conducted with SCDHEC.
- 3) The third interim concentration reduction goal will be achieved when 100% of the total CoC concentration above SSTLs in the SSTL wells and SSTL sampling points listed in the Appendix is removed. The formula outlined in Contract Item II.A.9.B.1 will be used. Payment of 10% of the total Corrective Action Cost will be made upon verification (see Contract Item III.B.10 for the method of verification) that 100% of the total CoC concentration above SSTLs. Achievement of this interim goal must be confirmed by split sampling conducted with SCDHEC.
- c. The final 20% of the total Corrective Action Cost will be paid upon receipt of an invoice and verification that CoC concentrations do not exceed SSTLs in all wells and sampling points listed in the Appendix, in any verification wells, and at any point in the area of concern, and that all assessment and corrective action components (e.g., wells, trenches, etc.) have been removed from the site and/or properly abandoned. Verification that the corrective action goals have been achieved will be based upon sampling of all wells and sampling points listed in the Appendix and additional verification wells to be installed at locations and depths designated by SCDHEC (see Contract Item III.B.10 for more details).

SCDHEC will collect split or duplicate samples from wells and sampling points in the area of concern to confirm that corrective action goals have been achieved and maintained.

10. NOTIFICATION FOR FAILURE TO PERFORM: If the contractor fails during the course of this contract to make reasonable progress toward the cleanup goals in accordance with the Corrective Action Completion Time as included in the Corrective Action Plan, or fails to meet any requirement or specification of corrective action as outlined in this document without prior notification to SCDHEC of circumstances legitimately beyond their control, SCDHEC will, on the first occurrence, notify the contractor by certified letter and meet with them to establish a timetable and remedy for the deficiency (ies). If the contractor corrects the deficiency (ies)

within the agreed to period of time, the contract award will continue. If the contractor does not correct the deficiency (ies) within the agreed to period of time, the contractor will be in breach of contract and the contract award may be voided by SCDHEC. On the second occurrence, SCDHEC will notify the contractor by certified letter and meet with them to establish a timetable and remedy for the deficiency (ies). If the contractor corrects the deficiency (ies) within the agreed to period of time, the contract award will continue. If the contractor does not correct the deficiency (ies) within the agreed period of time, the contractor will be in breach of contract and the contract award may be voided by SCDHEC. If the contractor fails on a third occasion during the course of this contract to meet any requirement or specification established in this document, the contractor will be in breach of contract and the contract award will be voided by SCDHEC. SCDHEC will notify the contractor by certified letter that the contract award has been voided and will initiate appropriate actions in accordance with Contract Item II.A.12. In the event that the contract award is voided due to a breach of contract as outlined above, no further payment of any invoices will be made and the contractor will incur a one-year suspension from bidding on any UST-related solicitations in South Carolina and may be subject to suspension or decertification in accordance with the SUPERB Site Rehabilitation and Fund Access Regulations, R.61-98.

- 11. CANCELLATION: The accepted Corrective Action Cost will be final and will not be increased or cancelled for any reason (e.g., unanticipated iron fouling of a system, wells clogging because of biological activity or sediments, damage by lightning, increased subcontractor costs, loss of utilities, modification to the system to meet the remediation goals, etc.) with the exception of unforeseen subsurface conditions as determined solely at the discretion of SCDHEC or identification of additional CoC from a release occurring after the award of this contract that adversely impacts the corrective action. Contractor-owned items used on-site for the contract that are damaged or destroyed by common acts of nature, improper maintenance or handling, theft or vandalism will not be replaced or reimbursed by the SUPERB Account. Payment will only be made for achieving the corrective action goals as specified in this document. No interim or partial payments will be made once corrective action is initiated, except as outlined in Contract Item III.B.3. Once corrective action has been initiated under this contract, in the event of a cancellation due to any of the conditions described in this Contract Item, final payment will be a percentage of the Corrective Action Cost equal to the actual percent reduction of the total CoC concentration based upon the last sampling results from all wells and sampling points listed in the Appendix less the amount previously paid. The contractor cannot delay progress or suspend corrective action activities at the site based upon a claim of a suspected new petroleum release from the UST system. Unless directed otherwise by SCDHEC, the contractor must continue to perform corrective action activities under this contract during any period of time during which a new petroleum release from the UST system is being investigated. The contractor must clearly demonstrate sufficient evidence of the release in the form of analytical test results or other demonstrative evidence to SCDHEC. The determination that a new petroleum release from the UST system has occurred that post-dates the contract award, and that adversely impacts corrective action at the site, is the sole discretion of SCDHEC.
- 12. LIQUIDATED DAMAGES: In the event that the contract award is voided for cause as outlined in Contract Item II.A.10, the contractor will be required to pay liquidated damages equal to the costs that are incurred by SCDHEC over and above the Corrective Action Cost in order to complete the corrective action as specified in this contract. The amount of liquidated damages will be computed by subtracting the unpaid balance of the Corrective Action Cost from the completion cost of the corrective action as determined by re-bid of the corrective action contract.

The contractor will be notified by certified mail of the amount of liquidated damages within 15 business days following opening of the re-bid. The contractor will have 60 days from the date of notification to make payment of the amount. In the event that the contractor is unable or unwilling to pay the liquidated damages, SCDHEC will initiate decertification of the contractor in accordance with Section V.A.4. of the SUPERB Site Rehabilitation and Fund Access Regulations, R.61-98, and may initiate legal action to secure payment of the damages.

A. SPECIFIC REQUIREMENTS

- 1. CONTRACT SCOPE: This contract is for corrective action at one site in South Carolina.
- 2. INQUIRIES: Questions or requests for information must be submitted in writing and received by 5:00 P.M. on the date specified in Contract Item I.C. After this date, no further questions will be addressed. A written response will be provided to all requestors of the solicitation. The questions may be faxed to E. Madison Winslow in the SCDHEC Bureau of Business Management at (803) 898-3505.
- 3. PROVISION FOR EARLY COMPLETION INCENTIVE: SCDHEC will pay the contractor an incentive of 10% of the Corrective Action Cost for early completion, subject to the conditions set forth in this provision. Payment will be made if the corrective action goals have been met in accordance with the terms of this contract prior to the end of the Site Incentive Period, as established by SCDHEC, and verified in accordance with Contract Item III.B.10.

The Site Incentive Period will commence on the Corrective Action System Startup Date. A month starts at 12:00 Midnight on the same day of the month as the Corrective Action System Startup Date and ends at Midnight preceding the same day of the following month. Months will be consecutively counted from the Corrective Action System Startup date. Following system startup, SCDHEC will provide the contractor notice in writing of the closing date of the Site Incentive Period.

The Site Incentive Period will not be adjusted for any reason, cause or circumstance whatsoever, regardless of fault, save and except in the instance of a catastrophic occurrence such as an event (e.g., hurricane) that results in a declared state of emergency and that directly and substantially affects the contractor's operations and results in unavoidable delay of the corrective action. In the event of a catastrophic occurrence on a specific site, SCDHEC shall determine the number of months reasonably necessary and due solely to such catastrophic occurrence to extend the Site Incentive Period. Any amendments to the Site Incentive Period will be provided to the contractor in writing.

The parties anticipate that routine delays may be caused by or arise from any number of events during the course of corrective action, including, but not limited to, work performed, work deleted, supplemental agreements, delays, disruptions, differing site conditions, utility conflicts, design changes or defects, extra work, right-of-way issues, permitting issues, actions of suppliers, subcontractors, or other contractors, actions by third parties, revision of the work scope by the contractor, weather, weekends, holidays, suspensions of the contractor's operations, or any other such events, forces or factors experienced in environmental work. Such delays or events, and their potential impacts on performance by the contractor are specifically contemplated and acknowledged by the contractor upon entering into this contract, and shall not affect the Site Incentive Period or incentives set forth in this contract item. Further, any and all costs or impacts whatsoever incurred by the contractor to complete corrective action within the Site Incentive

Period, whether successful or not, shall be the sole responsibility of the contractor in every instance.

The contractor shall have no rights under the contract to make any claim arising out of this incentive provision except as is expressly set forth in this provision.

The Site Incentive Period for Former Columbia Maintenance Facility, 3736 Marsteller St., Columbia, SC, UST Permit #07359 is 36 months.

4. SITE-SPECIFIC DETAILS: A brief technical summary, including location map and specifics of existing wells, is attached in the Appendix. The complete technical file will be available for review through the Freedom of Information (FOI) Office located at the Stern Building, 8911 Farrow Road, Columbia, SC. Offerors are strongly encouraged to review the file(s) to ensure a complete understanding of corrective action requirements. The successful offeror will be responsible for all information in the technical file. Appointment(s) to view the technical file may be scheduled on weekdays between the hours of 8:30 A.M. to 5:00 P.M. by calling the SCDHEC Freedom of Information Office at (803) 898-3882. NOTE: FPP is present at this site. The application of corrective action technologies or natural fluctuations in the water table can mobilize FPP and cause possible appearance of FPP and/or elevated CoC concentrations in non-SSTL wells and sampling points.

III. SPECIFICATIONS for CORRECTIVE ACTION

A. GENERAL SPECIFICATIONS

- 1. SUBMITTALS: All offerors must submit a completed Corrective Action Solicitation Response form (Contract Item IV). The response outlines in general terms the offeror's approach to achieve the corrective action goals.
- 2. MINIMUM REQUIREMENTS: Corrective action will be considered complete once the CoC concentrations are verified to be at or below SSTLs in the wells and sampling points listed in the Appendix and at any point in the area of concern, and all assessment and corrective action items are removed and/or abandoned. See Contract Item III.B.10 for the method of verification. Per R.61-98, all site rehabilitation activities associated with a UST release must be performed by a SCDHEC-certified Class I Site Rehabilitation Contractor. All corrective action plans and reports must be sealed by a Professional Engineer or Professional Geologist registered in the State of South Carolina. All engineering reports, drawings and plans must be sealed by a Professional Engineer registered in the State of South Carolina. All laboratory analysis for CoC must be performed by a SC-certified laboratory. All monitoring, verification, injection, or recovery wells must be installed and abandoned by a SC-certified well driller. The corrective action method(s) or technology (ies) will be designed to prevent vapors from entering onsite or adjacent structures. All applicable certification, training, permits, applications, and fees associated with well installation; injection, discharge, treatment, or transportation of groundwater, air, or soil; construction or operation of a corrective action system; and any other action requiring a permit are the responsibility of the contractor. Any required business or occupation licenses and occupational safety and health training (e.g., OSHA) as defined by the laws and regulations of the United States of America, the State of South Carolina, the county, or city are also the responsibility of the contractor. The terms and conditions of all applicable permits will be met. Any contaminated soil and construction debris, contaminated water, and FPP must be properly

SOUTH CAROLINA DEPARTMENT OF HEALTH AND ENVIRONMENTAL CONTROL IFB-37166-11/5/09-EMW

transported and disposed of, or treated at, an approved facility with prior approval from SCDHEC. Any costs for utilities construction and service (electric, telephone, sewer, etc.) required by the corrective action are the responsibility of the contractor.

B. PERFORMANCE REQUIREMENTS

1. CORRECTIVE ACTION PLAN: The contractor must complete and submit a detailed Corrective Action Plan within 30 days from the date the Purchase Order is issued by the Bureau of Business Management. Copies of the CAP must be distributed in accordance with Contract Item II.A.8. The CAP must define the method(s) and technology(ies) proposed to achieve corrective action goals in a manner that is consistent with the Corrective Action Completion Time submitted by the contractor. The corrective action method(s) or technology(ies) will be designed to prevent vapors from entering onsite or adjacent structures. It must be shown, by use of scientific models, computations, or discussion, how CoC concentrations will be reduced by each method and technology proposed. Any assumptions used in a model will be listed or shown, as well as appropriate references. Note that the use of monitoring well(s) for injection, extraction, or FPP recovery purposes is not allowed. Accordingly, the CAP may propose installation of additional recovery, sparge, compliance, or injection wells. General construction details will be included (e.g., install four additional recovery wells, construct a compliance point, install four air injection wells, excavate 3,000 cubic yards of impacted soils, etc.) as well as details of well abandonment and component removal. A corrective action timetable including demobilization and site restoration (Contract Items III.B. 10 and III.B.11) will be provided in the CAP.

SCDHEC will review the CAP and initiate a public notice period for a maximum of 30 days. The names and addresses of the owners of all impacted properties and all properties located adjacent to the impacted properties are provided in the Appendix. The contractor may be required to attend and provide input at one or more public meetings upon request by SCDHEC. Any CAP amendments and modifications resulting from the public notice must be submitted within 15 days of notification by SCDHEC. The CAP and any amendments or modifications must be sealed by a qualified Professional Geologist or Engineer registered in the State of South Carolina. The owner/operator and any other affected property owners will be consulted and will approve the location of the corrective action system. Any aboveground part of the system that is to remain on-site for longer than 30 contiguous days must be secured within a fenced area or building.

- 2. PERMIT APPLICATIONS: The contractor must complete and submit all applications for permits (injection, NPDES, BAQC modeling form, thermal treatment, construction, etc.) with the CAP. All submitted applications must comply with the requirements of the respective permitting program. Any required permit changes or corrections will be submitted within 15 days of notification by SCDHEC.
- 3. INITIAL MONITORING REPORT: Prior to Corrective Action System Startup, the contractor must submit to SCDHEC an initial monitoring report documenting FPP thicknesses, CoC concentrations, and potentiometric conditions in all wells and sampling points listed in the Appendix. The report will be due within 45 days after contract award. Copies of the initial monitoring report must be distributed in accordance with Section II.A.8.

Naturally occurring conditions may cause CoC concentrations to increase or decrease. For the purposes of this contract, the total CoC concentration for all wells and sampling points listed in the Appendix may reasonably increase up to 150% or decrease as much as 50%. If the total CoC concentration in all wells and sampling points listed in the Appendix increases more than 150%

or decreases by more that 50% based on initial sampling, or if measurable FPP that has not been previously documented in any report is detected during the initial sampling event, the contractor may request in writing that the contract award be canceled. If any of these conditions is identified during initial gauging, the contractor will notify SCDHEC within 2 days of identification and will submit written documentation within 5 days of notification. The contractor will be reimbursed based on the following rate schedule:

Subcontractor costs*	Invoice + 15%
Personnel mobilization	\$125.00
Equipment mobilization	\$250.00
Groundwater sample collection	\$35.00 per well
Gauging FPP	\$30.00 per well
Contaminated water disposal	\$90.00 per drum
CAP preparation and associated costs	\$6,000.00

^{*} Includes laboratory analysis, drilling, electrical, etc.

The rate schedule above does not apply in the event that the award is voided due to breach of contract in accordance with Contract Item II.A.10. If the contract is cancelled prior to Corrective Action System Startup due to any of the conditions described in this Contract Item, final payment will not exceed 40 percent of the Corrective Action Cost under any circumstance as no CoC reduction will have been accomplished by implementation of corrective action. If the corrective action system is started and treatment is performed, the contractor will be required to complete the contract unless conditions outlined in Contract Item II.A.11 are encountered.

4. CORRECTIVE ACTION PLAN IMPLEMENTATION: After CAP and all permit applications are reviewed and approved in accordance with the factors for determination set forth in R.61-92, Section 280.66, SCDHEC will issue a notice to proceed with CAP implementation. The contractor will implement the CAP within 30 days of receipt of the notice to proceed and any required permit to construct. If any problem with CAP implementation occurs, the contractor will notify SCDHEC within 24 hours of problem identification and will submit written documentation within 5 days of notification. Disruption to the normal business at the sites will be kept to a minimum. Upon completion of any required construction, SCDHEC will inspect the corrective action system and issue a permit to operate. The contractor will, at all times, keep the site free from waste materials and rubbish related to the corrective action. All contaminated soil and construction debris, contaminated water, and FPP generated on-site will be removed from the site promptly. Manifests documenting the proper disposal of the contaminated soil and construction debris, contaminated water, and FPP must be included in the appropriate report.

Implementation of the CAP is not authorized until the contractor receives a notice to proceed from SCDHEC. If premature implementation occurs, the SCDHEC will not reimburse related costs incurred by the contractor from the SUPERB Account, and the Corrective Action Cost will be reduced by the amount of the incurred costs. If the SCDHEC agrees with early implementation to better protect human health in an emergency and provides approval in writing, early implementation without any reduction to the Corrective Action Cost will be authorized.

5. PROPERTY ACCESS: The contractor will gain access to the adjacent properties to sample wells and sampling points, and to install any corrective action components, as required. The Contractor will be responsible for corrective action components installed on adjacent properties. Costs to repair or replace components of the corrective action damaged due to the actions of adjacent property owners cannot be paid by the SUPERB Account.

- 6. SYSTEM START-UP: The Contractor will initiate Corrective Action System Startup within 15 days of receipt of the permit to operate, if required. Corrective action as defined by the CAP will begin upon startup. NOTE: FPP is present at this site. The application of corrective action technologies or natural fluctuations in the water table can mobilize FPP and cause possible appearance of FPP and/or elevated CoC concentrations in non-SSTL wells and sampling points.
- 7. REPORTING: The contractor must complete and submit a Corrective Action System Evaluation (CASE) report on a quarterly schedule. The CASE report will be distributed in accordance with Contract Item II.A.8. The first quarterly CASE report is due within 120 days of Corrective Action System Startup and must include the following items:
 - a. A narrative portion that documents current site conditions, verification of system operation or CAP implementation, and system effectiveness in achieving the corrective action goals as outlined in the CAP. Any system down time and the associated reason(s) will be included in the report.
 - b. Conclusions and recommendations based on the reported data.
 - c. Groundwater laboratory analytical data for all wells and sampling points listed in the Appendix in the following format (additional parameters such as EDB and lead may be required)):

Analytical Data (ug/l)

Monitoring Well	Date	Benzene	Toluene	Ethylbenzene	Xylene s	MTBE	Naphthalene
MW-1	7/15/97	145	200	146	1,000	170	47
	10/15/97	140	190	140	900	50	165
MW-2	7/15/97	580	800	300	1,000	60	20
	10/15/97	480	90	257	912	50	19

d. Groundwater potentiometric data for all wells and sampling points listed in the Appendix in the following format:

Groundwater Data (feet)

Monitoring Well	Date	TOC Elevation	TOC to GW	TOC to FP	FP Thickness	GW Elevation
MW-1	7/15/97 10/15/97	98.0 98.0	17.54 17.90			80.46 80.10
MW-2	7/15/97 10/15/97	100.0 100.0	20.50 21.50	20.47 21.48	0.03 0.02	79.50 78.50

e. A groundwater elevation contour map of the site based on current groundwater potentiometric data.

f. A CoC map based upon current groundwater laboratory analytical data. The groundwater data should be adjacent to the relevant well or gauging point using the following format (additional parameters such as EDB and lead may be required):

MW- (NUMBER)
Benzene (μg/l)
Toluene (μg/l)
Ethylbenzene (μg/l)
Xylenes (μg/l)
MTBE (μg/l)
Naphthalene (μg/l)

- f. Calculation of CoC concentration reduction as outlined in Contract Item II.A.9.b.1).
- g. A copy of the SCDHEC approval letter and manifests for any contaminated soil, contaminated water, and FPP removed from the site for treatment and disposal.
- h. Any additional data required by permits (e.g., air analyses, wastewater effluent analyses and amounts, etc.). The data should be reported on a form or in a format specified in the permits, and attached to the CASE report as an addendum.

All wells and sampling points listed in the Appendix will be sampled on a quarterly schedule and for 2 years following Corrective Action System Startup. This protocol must be followed regardless of the operational status of the corrective action system. Thereafter, the number of wells and points sampled may be reduced and/or the reporting interval lengthened upon clear demonstration of CoC concentration reduction, unless restricted by permit requirements. The contractor must submit a written request for a change in the protocol to SCDHEC. Approval for any reduction in the number of wells and points to be sampled, or for any lengthening of the reporting interval, is at the sole discretion of SCDHEC. SCDHEC may require data to be reported on a form or in a specific format. The contractor will be provided with the proper report forms and format prior to Corrective Action System Startup. The contractor will be notified of any revisions to the report forms or format 90 days prior to the due date for the next CASE report.

8. SAMPLING: The contractor must collect water samples from all wells and sampling points listed in the Appendix on a quarterly schedule. Do not sample wells and sampling points containing measurable (0.01') FPP. If measurable FPP is present, the thickness of product and depth to groundwater must be recorded to the nearest 0.01'. For wells where the water level is within the screened interval, groundwater samples should be collected without purging. For wells where the water level is not within the screened interval, purging must be conducted and pH, temperature, dissolved oxygen, and specific conductance measurements recorded. With the exception of water supply wells, most wells will not require purging. Purging is considered complete once three well volumes have been removed or the pH, temperature, dissolved oxygen, and specific conductance have equilibrated, yielding two consecutive readings with all parameters within ±10% variance, whichever comes first. Sampling logs should note all field measurements, as well as the location and type of each sample submitted for laboratory analysis. Each groundwater sample will be collected in accordance with established QA/QC protocol and submitted to a certified laboratory for analysis. The samples must be analyzed for the parameters listed in the Appendix.

Additional samples (air, groundwater, effluent, soil) required by permits must be collected in

accordance with established QA/QC protocol and submitted to a certified laboratory for analysis. The samples will be analyzed for parameters stipulated in the permits. Sampling and analytical data for each sample (e.g., field sampling logs, chain of custody forms, certificates of analysis, and the lab certification number) will be included in the CASE report.

- 9. DISPOSAL: The contractor must properly dispose of all contaminated soil, contaminated water, and FPP generated during the corrective action. The owner/operator of the UST facility is considered to be the generator. Treatment and disposal must be conducted at SCDHEC-approved facility, and documented in the CASE reports.
- 10. QUALITY ASSURANCE & VERIFICATION: Once the third interim CoC concentration reduction goal (100%) has been maintained for a period of 30 days, the contractor must suspend corrective action and provide notification to SCDHEC. The corrective action suspension date will be considered the start of the two-quarter, post-corrective action verification period. The contractor will sample all wells and sampling points listed in the Appendix, and all verification wells on a quarterly schedule after the start of the verification period. **Do not sample wells and sampling points containing measurable (0.01') FPP.** If measurable FPP is present, the thickness of product and depth to groundwater must be recorded to the nearest 0.01'. The samples should be analyzed for the parameters listed in the Appendix, and also analyzed for following natural attenuation parameters:

Analyte	Analytical Method*	Reporting Limit (µg/l)
Dissolved Oxygen	SM4500-O G	500
Ferrous Iron	SM3500-Fe D	30
Methane	Kerr	1000
Nitrate	9056/9210	100
Sulfate	9038/9056	1000

*or EPA equivalent method that can achieve the same reporting level

If sampling results indicate that the third interim CoC concentration reduction goal has not been maintained, and/or CoC concentrations exceed SSTLs in the verification wells, corrective action must be resumed. SCDHEC may require the contractor to propose a revised corrective action strategy and timetable to achieve and maintain the goal. The strategy may require modification of the existing corrective action system. The post-corrective action period will be suspended and corrective action will continue until the third interim CoC concentration reduction goal is again achieved and maintained for a period of 30 days, and CoC concentrations in the verification wells remain below SSTLs for a period of 30 days. Once again, the contractor will suspend corrective action and a new post-verification period will begin. The aforementioned cycle of activity must be repeated until CoC concentrations remain at or below SSTLs in all wells and sampling points listed in the Appendix, and in all verification wells for 2 consecutive quarters.

SCDHEC may require installation of three verification wells during the post-corrective action verification period at designated locations and depths. Costs for the verification wells will be

considered part of the Corrective Action Cost. SSTLs for the verification wells will be provided by SCDHEC.

SCDHEC will collect split or duplicate samples from wells and sampling points in the area of concern to verify achievement of the second (90%) and third (100%) interim CoC concentration reduction goals, and may collect split or duplicate samples to verify achievement of the first (60%) interim CoC reduction goal. Split or duplicates samples will also be collected at the end of the two-quarter, post-corrective action verification period to confirm that corrective action goals have been maintained. In addition to the split samples, SCDHEC may provide up to three standards or prepared blanks for the contractor's laboratory to analyze. Analytical data sets from the contractor's laboratory and SCDHEC's laboratory will be compared. In the event of substantial variance (more than 15%) between the sets, a second split sampling event may be conducted with the contractor. If the variance persists, all data sets and associated quality assurance/quality control data will be provided to SCDHEC Laboratory Certification to determine the cause of the variance. The Director of the UST Management Division will solicit input from Laboratory Certification, the UST Section Manager, the UST Project Manager, and the contractor, and render a final decision as to which data set will be used for verification. The contractor will be provided a written record of the decision.

If the contractor anticipates that split sampling is warranted, SCDHEC must be allowed at least two weeks to schedule a mutually agreeable time for the split sampling event. Costs for transportation and analysis of split or duplicate samples collected by SCDHEC will be paid by SCDHEC.

- 11. DEMOBILIZATION: The contractor will disassemble and remove the corrective action system and associated equipment including utilities within 60 days of notification by SCDHEC that the corrective action goals have been achieved and maintained. Disruption to the owner/operator's or property owner's business must be kept to a minimum.
- 12. SITE RESTORATION: The contractor must properly abandon all assessment and corrective action components (monitoring, recovery, and/or injection wells (including pre-existing wells), borings, trenches, piping/utility runs, etc.) within 60 days of notification by the SCDHEC that the corrective action goals have been achieved. Abandonment will be in accordance with South Carolina Well Standards and Regulations R. 61-71 and accepted industry standards for abandonment of trenches and piping/utility runs. Disruption to the owner/operator's or property owner's business must be kept to a minimum. The contractor must provide SCDHEC with documentation of the abandonment and disposal of any remaining contaminated soil, contaminated groundwater, and FPP. The contractor will restore the site to the condition that existed prior to assessment and corrective action (e.g. repaying, reseeding, etc.)
- 13. COMPLETION NOTICE: Written notice must be provided to SCDHEC at least two weeks prior to completion of site restoration. This will allow SCDHEC and the contractor time to jointly inspect the site and, if necessary, compile a list of tasks to be finished. Task items may include, but are not limited to, well abandonment, pavement repair, debris removal, etc. Site restoration will be complete once all the tasks are finished and/or the site passes a final inspection by SCDHEC.

IV. BID AWARD

A. ACC	EPTAN	CE and	DEL	IVERY	STATE	MENT
--------	-------	--------	-----	-------	-------	------

bid is accepted within of specified at the prices set forth for all acceptance of financial approval should of the releases and the geologic condition. Any quantities listed in changes to those quantities or to	subject to all requirements thereof, the offeror agrees, if this days from date of opening, to initiate the corrective action as sites as stated below. For the purpose of this submittal and d it occur, I certify that this company understands the nature tions at this site as documented in the technical file and this the corrective action method(s) below are estimates and the listed method(s) will not affect the bid price. The hyunderstands that acceptance is based on total cost to treat
Contractor (Print)	Certification Number
Authorized Representative (Print)	Signature
Marsteller St., Columbia, SC, UST P	tions for Former Columbia Maintenance Facility, 3736
date of corrective action system statements. 3. The Corrective Action Cost, in whole permitted technology applied, to treat	Time, in months, to complete the corrective action from the rtup until corrective action goals are met will be de dollars, regardless of the type, quantity, or duration of the at the area of concern shown in the Appendix such that the ol'at any point and CoC concentrations do not exceed SSTLs

complete other items outlined in this solicitation is: \$____

SOUTH CAROLINA DEPARTMENT OF HEALTH AND ENVIRONMENTAL CONTROL IFB-37166-11/5/09-EMW

PLEASE READ THE FOLLOWING CAREFULLY PRIOR TO COMPLETING BID INSTRUCTIONS TO BIDDERS

DISCUSSIONS AND NEGOTIATIONS: By submission of a bid, bidder agrees that during the period following issuance of this solicitation and prior to notification of intent or award of a contract, the bidder shall not discuss this procurement with any party except members of the DHEC Procurement Division or other parties designated in this solicitation. Bidder shall not discuss or attempt to negotiate with the using area or program any aspects of the procurement without prior approval of the DHEC Procurement Division Buyer responsible for the procurement. Infractions may result in rejection of the violator's bid.

- 1. Unless otherwise required herein, only one signed copy of the invitation to bid is required.
- 2. Bids "faxed" directly to the DHEC Procurement Office will not be accepted or considered for award.
- 3. Bids, amendments thereto or withdrawal request must be received by the time advertised for bid opening. It is the bidder's sole responsibility to insure that these documents are received by the person (or office) at the time indicated in this solicitation document. DHEC Underground Storage Tank Environmental Remediation Procedures shall govern any withdrawal request received after the time of the bid opening.
- 4. When specifications or descriptive papers are submitted with the bid submission, enter bidder's name thereon.
- 5. Submit your signed bid on this form. Show the bid number on the envelope as instructed. DHEC assumes no responsibility for unmarked or improperly marked envelopes. All envelopes received showing a bid number are placed directly under locked security until the date and time of opening. Do not include more than one bid invitation per envelope. If directing any other correspondence, address the envelope to the Procurement Officer but do not include the bid number on the envelope since it does not include your bid.
- 6. Bidders must clearly mark as "CONFIDENTIAL" each part of their bid which they consider to be proprietary information that could be exempt from disclosure under Section 30-4-40, Code of Laws of South Carolina 1976 (1986 Cum. Supp.; Freedom of Information Act). If any part is designated as confidential, there must be attached to that part an explanation of how this information fits within one or more categories listed in Section 30-4-40. DHEC reserves the right to determine whether this information should be exempt from disclosure and no legal action may be brought against the State, DHEC or its agents for its determination in this regard.
- 7. By submission of a bid, **you are guaranteeing** that all goods and services meet the requirements of this solicitation during the contract period.
- 8. Tie bids will be resolved as outlined in DHEC Underground Storage Tank Environmental Remediation Procedures.
- 9. **Do not include any taxes** that DHEC may be required to pay in the bid price. Upon submission of a bid by a state agency, the Procurement Officer will compute a 5% sales and use tax to the non-state agency bids when applicable (service and labor excluded) in determining the low bidder. This procedure conforms to the SC Tax Commission Sales and Use Tax Regulation 117-174-, 95.
- 10. **Correction of errors on this bid form:** All prices and notations should be printed in ink or typewritten. Errors should be crossed out, corrections entered and initialed by the person signing the bid. Erasures or use of typewriter correction fluid may be cause for rejection. No bid shall be altered or amended after the time specified for the bid opening.
- 11. **Ambiguous bids** that are uncertain as to terms, delivery, quantity, or compliance with this solicitation may be rejected or otherwise disregarded.
- 12. Any bidder desiring to exercise a grievance may do so under section IV of DHEC Underground Storage Tank Environmental Remediation Procedures. All correspondence should be directed to the Director of Procurement Services, Bureau of Business Management, 2600 Bull Street, Columbia, SC 29201.
- 13. Failure to respond to three consecutive bid notices may result in removal of bidder's name from the mailing list.

GENERAL PROVISIONS

- 14. DHEC reserves the right to reject any and all bids, and to cancel this solicitation.
- 15. Unit prices will govern over extended prices unless otherwise stated in this solicitation.
- 16. **Prohibition of Gratuities:** Amended section 8-13-420 of the 1976 Code of Laws of South Carolina States: "Whoever gives or offers to any public official or public employee any compensation, including a promise of future employment, to influence his action, vote, opinion or judgment as a public official or public employee or such public official solicits or accepts such compensation to influence his action, vote, opinion or judgment shall be subject to the punishment as provided by Section 16-9-210 and Section 16-9-220. The provisions of this section shall not apply to political contributions unless such contributions are conditioned upon the performance of specific actions of the person accepting such contribution nor shall they prohibit a parent, grand-parent or relative from making a gift to a child, grandchild, or other close relative for love and affection except as hereafter provided".
- 17. **Bidder's Qualification:** Bidders must, upon request of DHEC, furnish satisfactory evidence of their ability to furnish products or services in accordance with the terms and conditions of these specifications. DHEC reserves the right to make the final determination as to the bidder's ability to provide the products or services requested herein.

SOUTH CAROLINA DEPARTMENT OF HEALTH AND ENVIRONMENTAL CONTROL IFB-37166-11/5/09-EMW

- 18. **Bidder's Responsibility:** Each bidder shall fully acquaint himself with conditions relating to the scope and restrictions attending the execution of the work under the conditions of this solicitation. It is expected that this will sometimes require on-site observation. The failure or omission of a bidder to acquaint himself with existing conditions shall in no way relieve him of any obligation with respect to this bid or to the subsequent contract.
- 19. **Amendments**: All amendments to and interpretations of this solicitation shall be in writing from the DHEC Procurement Office. Neither DHEC nor the Procurement Officer shall be legally bound by any amendment or interpretation that is not in writing.
- 20. **Award Criteria:** Award shall be as indicated herein to the lowest responsible and responsive bidder whose bid meets the requirements and criteria set forth in this solicitation. Award may take longer than fourteen days. A copy of the award notice should be posted on Procurement Services' website at: dhec.sc.gov/procurement.
- 21. **Rejection:** DHEC reserves the right to reject any bid that contains prices for individual items or services that are unreasonable when compared to the same or other bids if the rejection is in the best interest of the State.
- 22. Competition: This solicitation is intended to promote competition. If the language, specifications, terms and conditions, or any combination thereof restricts or limits the requirements in this solicitation to a single source, it shall be the responsibility of the interested bidders to notify the DHEC Procurement Office in writing so as to be received five days prior to the opening date. Notification may be "faxed" to the DHEC Procurement Office, (803) 898-3505. The solicitation may or may not be changed but a review of such notification will be made prior to award.
- 23. Order of Precedence: In the event of inconsistency between provisions of this solicitation, the inconsistency shall be resolved by giving precedence in the following order; (A) the bidding schedule, (B) the specifications, (C) general conditions, (D) special provisions or special conditions of the contract whether incorporated by reference or otherwise, and (E) instruction to bidders.

GENERAL CONDITIONS

- 24. **Contract Administration:** Questions or problems arising after award of this solicitation/contract shall be directed to the DHEC Procurement Office, 2600 Bull Street, Columbia, SC, 29201. Reference the solicitation and contract number.
- 25. Default: In case of default by the contractor, DHEC reserves the right to purchase any or all items in default in the open market, charging the contractor with any additional costs. The defaulting contractor shall not be considered a responsible bidder until the assessed charge has been satisfied.
- 26. Save Harmless: (This General Condition does not apply to solicitations for service requirements). The successful bidder shall indemnify and save harmless the State of South Carolina and DHEC and all its officers, agents and employees from all suits or claims of any character brought by reason of infringing on any patent, trade mark or copyright. The bidder shall have no liability to DHEC if such patent, trademark or copyright infringement or claim is based upon the bidder's use of material furnished to the bidder by the State.
- 27. **Publicity Releases:** By submission of a bid, the contractor agrees not to refer to award of this contract in commercial advertising in such a manner as to state or imply that the products or services provided are endorsed or preferred by DHEC or user.
- 28. **Tax Credit Availability**: Bidders interested in income tax credit availability by subcontracting with Certified Minority Firms should contact the Office of Minority Business Assistance, 1205 Pendleton Street, Columbia, SC, 29201. (803-734-0562)
- 29. **Affirmative Action:** The successful bidder will take affirmative action in complying with all Federal and State requirements concerning fair employment and employment of the handicapped, and concerning the treatment of all employees, without regard or discrimination by reason of race, color, religion, sex, national origin or physical handicap.
- 30. **Assignment:** Unless otherwise indicated in this solicitation, no contract or its provisions may be assigned, sublet, subcontracted, or transferred without the prior written consent of the DHEC Procurement Office.
- 31. **Termination:** Any contract resulting from this solicitation may be terminated by DHEC by providing a thirty-day advance notice in writing to the successful contractor.
- 32. **Non-Appropriations**: Any contract entered into by DHEC resulting from this solicitation shall be subject to cancellation without damages or further obligation when funds are not appropriated or otherwise made available to support continuation of performance in a subsequent fiscal period or appropriated year.
- 33. **Convenience**: In the event that this contract is terminated or canceled upon request and for the convenience of DHEC without the required thirty days advance written notification, then DHEC shall negotiate reasonable applicable termination costs
- 34. **Cause:** Any contract resulting from this solicitation may be terminated without advance notice by DHEC for cause, default or negligence on the part of the successful contractor.
- 35. **S.C. Law Clause:** Upon award of a contract under this bid, the person/partnership, association or corporation to whom the award is made must comply with the laws of South Carolina which require such person or entity to be authorized and/or licensed to do business with this State. Notwithstanding the fact that applicable statutes may exempt or exclude the successful bidder from requirements that it be authorized and/or licensed to do business in this State. By submission of a

bid, the bidder agrees to subject himself to the jurisdiction and process of the courts of the State of South Carolina as to all matters and disputes arising or to arise under the contract and the performance thereof, including any questions as to the liability for taxes, licenses or fees levied by the State of South Carolina.

- Quality of Product: (This general condition does not apply to solicitations for printing or service requirements.) Unless otherwise indicated in this solicitation, it is understood and agreed that any item offered or shipped as a result of this solicitation shall be new and in first class condition, that all containers shall be new and suitable for storage or shipment, and that prices include standard commercial packaging. If items that are other than new (i.e., remanufactured or refurbished) are desired to be bid, the bidder must obtain written permission to bid such items at least five days in advance of the bid opening date. Written permission must be obtained from the DHEC Procurement Office.
- 37. **Compliance with Federal Requirements:** S.C. State or Federal requirements that are more restrictive shall be followed in bidding, awarding and performance of this contract.
- 38. **Drug-Free Workplace:** Required by Section 44-107-10 (Drug Free Work-Place Act) of the SC Code of Laws, 1976, as amended. By submission of a bid, the bidder certifies that he will comply with all aspects of the Drug-Free Workplace Act and will not engage in the unlawful manufacture, distribution, dispensation, possession or use of a controlled substance in the performance of this contract. This certification also applies to any individual or firm employed by the contractor.
- 39. Confidentiality Policy: The successful contractor agrees to abide by DHEC's policy of confidentiality which states in part that all information as to personal facts and circumstances given or made available to employees and/or contractors of DHEC in administration of programs shall be held confidential and shall not be divulged without the express written consent of the individual(s) to which it pertains.
- 40. **Item Substitution:** No substitution of items will be allowed on any purchase made from the awarded contract without written permission from the DHEC Procurement Office.
- 41. **Outside Contractor Program:** If applicable to scope of contract, contracted employees working on DHEC properties are entitled to information about hazardous chemicals present at DHEC; and DHEC's personnel are entitled to information about hazardous chemicals brought to the facilities by contractors. In order to assure continued compliance with the Hazard Communication Standards while contractors are on DHEC property and to control potential compliance obligations under the Superfund Amendments and Re-authorization Act, it is DHEC's policy to:
 - A. Obtain <u>written assurance</u> that the contractor's employees have been trained to understand the hazards of the chemicals at DHEC and how to use appropriate personal protective equipment. All personal protective equipment and training required for the contractor's employees will be provided by the contractor at the contractor's expense. (This includes SC State General Services employees).
 - B. Require the contractor to notify the DHEC Bureau of Business Management or the appropriate DHEC unit Director when introducing hazardous chemicals into DHEC work areas, which may harmfully expose DHEC employees. If the contractor is introducing such hazardous chemicals into any DHEC facility or onto DHEC property, the contractor shall provide the DHEC Division of Procurement Services or the DHEC unit Director copies of the Material Safety Data Sheets (MSDS) for those chemicals. The DHEC Division of Procurement Services or the DHEC unit Director should provide appropriate information to the DHEC employees before the contractor(s) enter any DHEC facility with chemicals.
 - C. DHEC reserves the right to refuse to allow any contractor to bring any chemical onto DHEC property. The Department also reserves the right to refuse to allow any contractor to bring certain quantities of chemicals on DHEC property.

SCDHEC IFB-37166-11/5/09-EMW Page: 21

Appendix A

UST # 07359, Former Columbia Maintenance Facility Richland County

Distribution List for Plans and Reports

Responsible Party:

Mr. Peter Reinhart SCDOT PO Box 191 Columbia SC 29201

Property Owners*:

Silver Spur Properties LLC PO Box 117 Columbia, SC 29203

Angelo McBride Office of Business Opportunities City of Columbia PO Box 147 Columbia, SC 29217

Housing Authority City of Columbia 1917 Harden St Columbia, SC 29204

Eulalia Talley 1303 Elmore St Columbia, SC 29203

*Subject to change

SCDHEC IFB-37166-11/5/09-EMW

Page: 22

SCDHEC IFB-37166-11/5/09-EMW

Page: 23

Table of Analytical Parameters

Analyte	Analytical Method*	Reporting Limit
BTEX*	8260B	5 μg/l
Naphthalene*	8260B	5 µg/l
MTBE*	8260B	5 µg/l
1,2-DCA*	8260B	5 μg/l
EDB	8011	0.02 μg/l
TAA	8260B	5 μg/l

The Bureau of Land and Waste Management UST Management Division no longer accepts equivalent analytical methods for VOC analysis.

The above analyses are required for quarterly sampling.

Verification Wells

Three verification wells may be installed during the post-corrective action monitoring period at locations and depths designated by the UST Management Division. Costs for the well installation are considered part of the approved Corrective Action Cost. The Division will calculate SSTLs for the verification wells and provide the data to the Contractor in writing. During verification, all wells must be sampled for the parameters listed above as well as the following parameters:

Analyte	Analytical Method*	Reporting Limit
Dissolved Oxygen	SM4500-O G	500 μg/l
Ferrous Iron	SM3500-Fe D	30 µg/l
Methane	Kerr Method	1 mg/l
Nitrate	9056/9210	100 µg/l
Sulfate	9038/9056	1000 µg/l

Table of Current CoC Concentrations in Groundwater

CoC concentrations requiring reduction in parts per billion (μ g/I) based on May 26-29, 2009 and June 4-8, 2009 sampling and gauging:

Well	Free Product Thickness	Benzene	Toluene	Ethylbenz.	Xylene	Naphth.	MtBE	EDB	1,2- DCA	TAA
MW-1		<5	<5	<5	<5	<5	<5	<0.02	<5	<100
MW-1R		<5	<5	<5	<5	<5	<5	<0.02	<5	<100
MW-2R		1400	8100	1700	8700	570	<500	7.5	<500	<10,000
MW-3		3200	14,000	1800	10,900	700	<500	15.7	<500	<10,000
MW-4		<5	<5	<5	<5	<5	<5	<0.02	<5	<100
MW-5	·	16	<5	<5	<5	<5	<5	<0.02	<5	420
MW-6		640	270	550	820	250	<5	1.89	<5	1200
MW-7		1200	140	160	284	71	40	<0.02	<5	1800
MW-8		<5	<5	<5	<5	<5	53	<0.02	< 5	<100
MW-9	· · ·	<5	<5	<5	<5	<5	<5	<0.02	<5	<100
MW-10		<5	<5	<5	< 5	<5	< 5	<0.02	<5	<100
MW-11		<5	<5	<5	<5	<5	<5	<0.02	<5	<100
MW-12		<5	<5	<5	<5	<5	<5	<0.02	<u><5</u>	<100
MW-13		<5	<5	<5	<5	<5	<5	<0.02	<5	<100
MW-14	·†···	<5	<5	<5	<u><5</u>	< 5	<5	<0.02	<5	<100
MW-15	·	<5	<5	<5	<5	<5	<5	<0.02	<5	<100
MW-16	1	<u> </u>		<5	<5	<5	<5	<0.02	<5	<100
MW-17	 	<5	<5	<5	<5	<5	<5	0.046	<5	<100
MW-19**	0.01'	29,000	31,000	<2500	13,100	<2500	<2500	650	<2500	<50,000
MW-20	0.01	810	3800	410	3030	120	<5	4.54	<5	<100
MW-21	+	2300	3300	530	2680	<500	<500	11.5	<500	<10,000
MW-22		5300	17,000	<2500	12,000	<2500	<2500	63.8	<2500	
MW-23		72	580	290	1560	89	<5	0.219	<5	<50,000 220
MW-24**	1.42'	8600	30,000	3400	18,600	<2500	<2500	133	<2500	
MW-25	1.42	1500	9100	1800	8400	<500				<50,000
MW-26**	0.51'						<500	3.71	<500	<10,000
MW-27	0.51	6500 9300	6900	2200	7800	690	470	42.8	72	4200
MW-28		9300 <5	11,000 <5	1100 <5	5600 <5	350 <5	<250 <5	190	<250	<5000
MW-29		2500	8400	1700	9000	1000	20	<0.02 9.5	<5 7.3	<100
MW-30		25,000	34,000	3000	16,200	<2500	<2500	852	7.3 <2500	2700
MW-31	 	550	34,000	83		94				<50000
MW-32	· }	8400			9900	<2500	17 <2500	0.451	15	810
MW-33	-	950	15,000 830	<2500 130	380	50	47	15.7 9.92	<2500	<50,000
MW-34	 	1900	1500						35	1400
MW-35				280	860	150	25	<0.02	<5	1300
MW-36**	2.25'	5200	20,000	2800	13,800	760	<500	94.4	<500	<10,000
MW-37	<u> </u>	19,000	41,000	3300	18,500	<2500	<2500	318	<2500	<50,000
MW-38		7500 3800	21,000 1800	2700	14,300	<2500	<2500	103	<2500	<50,000
MW-39	· · · · · · · · · · · · · · · · · · ·			1600	3240	600	92	4.73	16	5000
MW-40		68	14	23 2300	33	<5 690	<5 <500	<0.02 171	<5	280
		11,000	18,000		12,700				<500	<10,000
MW-41		380	26	14	62	8.8	6.6	0.75	14	970
MW-42	 	<5 6400	<5	<5 4600	<5 cooo	<5 670	<5 40	<0.02	<5 20	<100
MW-43	-	6100	12,000	1600	6900	570	49	37.2	28	5000
MW-44	 	<5	<5 430	<5	<5	<5	<5	<0.02	<5	<100
MW-45	1	150	120	170	570	120	<5	0.64	<5	120
MW-46	- -	3000	4400	400	2290	60	11	36.1	55	3200
MW-47		200	280	180	470	77	<5	0.228	<5	<100
MW-48	 	190	<5	<5	<5	16	<5	<0.02	<5	430
MW-49		<5	<5	< 5	<5	16	<5	<0.02	<5	<100
DW-1	.	<5	<5	<5	<5	<5	<5	<0.02	<5	<100
DW-2		15	97	34	234	34	<5	0.029	<5	<100
DW-3		<5	7	< 5	9.6	8	<5	<0.02	<5	<100
DW-4		<5	<5	<5	<5	<5	<5	<0.02	< 5	<100
DW-5		8.9	48	34	163	1400	<5	0.038	<5	<100
DW-6		<5	<5	< 5	<5	<5	<5	<0.02	<5	<100
SW-1	T	16	<5	<5	<5	<5	<5	<0.02	<5	<100

^{*} CoC concentations may vary due to seasonal fluctuations in the groundwater.

^{**} Initial CoC concentrations will be set at the levels detected after the removal of Free Phase Product

SCDHEC IFB-37166-11/5/09-EMW

Page: 25

Table of SSTLs Site-specific target levels (SSTLs) for interim payment under this solicitation in parts per billion (μg/l).

Well	Benzene	Toluene	Ethylbenzene	Xylene	Naphth.	MtBE	EDB	1,2-DCA	TAA
MW-2R	95	8100*	1700*	8700*	570*	500**	5.93	113	2783
MW-3	162	14,000*	1800*	10,900*	700*	500**	14	199	3935
MW-6	33	270*	550*	820*	190	5**	1.09	5**	1200*
MW-7	19	140*	160*	284*	71*	40*	0.02**	5**	868
MW-19	81	21,576	2500**	13,100*	497	437	4.59	96	2504
MW-20	88	3800*	410*	3030*	120*	5**	4.54*	5**	100**
MW-21	75	3300*	530**	2680*	454	407	4.01	88	2382
MW-22	75	17,000*	2500**	12,000*	454	407	4.01	88	2382
MW-23	72*	580*	290*	1560*	89*	5**	0.219	5**	220*
MW-24	107	29,395	3400*	18,600*	671	557	7,21	129	3015
MW-25	122	9100*	1800*	8400*	500**	500**	3.71*	148	3284
MW-26	122	6900*	2200*	7800*	690*	470*	8.90	72*	3284
MW-27	75	11.000*	1100*	5600*	350*	250**	4.01	88	2382
MW-29	156	8400*	1700*	9000*	1000*	20*	9.5*	7.3*	2700*
MW-30	122	33,959	3000*	16,200*	773	624	8.9	148	3284
MW-31	50	34*	83*	44*	94*	17*	0.451*	15*	810*
MW-32	92	15.000*	2500**	9900*	566	486	5.58	109	2715
MW-33	54	830*	130*	380*	50*	47*	2.37	35*	1400*
MW-34	36	1500*	280*	860*	150*	25*	0.02**	5**	1300*
MW-35	162	20,000*	2800*	13,800*	760*	500**	14	199	3935
MW-36	64	16,507	2682	18,500*	383	354	3.11	74	2126
MW-37	42	10,501	2146	14,300*	246	249	1.6	48	1597
MW-38	28	1800*	1600*	3240*	159	92	0.83	16	1184
MW-39	68*	14*	23*	33*	5**	5**	0.02**	5**	280*
MW-40	133	18,000*	2300*	12,700*	690*	500**	10.2	162	3468
MW-41	88	26*	14*	62*	8.8*	6.6*	0.75*	14*	970*
MW-43	19	4331	1394	6900*	104	49*	0.44	20	868
MW-45	50	120*	170*	570*	120*	5**	0.64*	5**	120*
MW-46	151	4400*	400*	2290*	60*	11*	12.4	55*	3200*
MW-47	122	280*	180*	470*	77*	5**	0.228*	5**	100**
MW-48	95	5**	5**	5**	16*	5**	0.02**	5**	430*
DW-2	15*	97*	34*	234*	34*	5**	0.029*	5**	100**
DW-5	8.9*	48*	34*	163*	159	5**	0.038*	5**	100**
Total	2681.9	261,013	40,415	203,125	10.810.8	7093.6	133.4	1978.3	59,026

^{*} Laboratory analysis is less than calculated SSTL. SSTL is set equal to laboratory analysis.

^{**} Laboratory analysis is below detection limit. SSTL is set equal to detection limit.

UST # 07359, Former Columbia Maintenance Facility Richland County

SCDHEC IFB-37166-11/5/09-EMW Page: 26

The following pages include information from:

Tier II Report Received 07/29/2009
Tier I Report Received 09/26/2000
Tier II Report Received 09/05/2002
Various Groundwater Sampling Events 2000-2006
Assessment Report Received 02/22/2007
Assessment Report Received 05/20/2008
Assessment Report Received 12/18/2008
Geophysical Report from the Tier II Report Received 07/29/2009

The complete technical file will be available for review through the Freedom of Information (FOI) Office located at the Stern Building, 8911 Farrow Road, Columbia, SC. Offerors are strongly encouraged to review the file(s) to ensure a complete understanding of corrective action requirements. The successful offeror will be responsible for all information in the technical file. Appointment(s) to view the technical file may be scheduled on weekdays between the hours of 8:30 A.M. to 5:00 P.M. by calling the SCDHEC Freedom of Information Office at (803) 898-3882.

TABLE 1

Former SCDOT Columbia Maintenance Facility 3736 Marsteller Drive, Columbia, SC

SITE ID# 07359 GS2 Project # 09-3114-1

		S	OIL FIELD S	CREENING	SUMMARY	<u> </u>		
SAMPLE ID	TOTAL DEPTH			PID	RESULTS (I	PPM\		
	52	4'	8'	12'	16'	20'	24'	28'
TMW-1	20'	1075	1275	1300	1330	1340		
TMW-2	18'	1290	1340	1320	N/A	900 (18')		
TMW-3	20'	1380	1345	1375	1015	678		
TMW-4	20'	1317	1298	1343	1258	1233		_
TMW-5	20'	27	50	100	470	320		
TMW6	22'	20	15	25	40	25	30 (22')	
TMW-7	22'	20	12	25	20	30	30 (22')	
TMW-8	22'	60	8	15	83	160	100 (22')	
TMW-9	20'	BDL	BDL	10	24	4		
TMW-10	20'	3	13	12	45	94		
TMW-11	20'	16	70	152	12	120		
TMW-12	20'	BDL	0.1	0.8	3	3		
TMW-13	21'	472	455	65	1432	455		
TMW-14	20'	BDL	. 1	73	6	3		
TMW-15	22'	1200	170	25	6	16	330 (22')	
TMW-16	20'	11	20	25	800	350		
TMW-17	20'	7	11	40	960	1500		
TMW-18	20'	100	72	45	4	10		
TMW-19	20'	1800	49	21	30	52		
			·		·			
					·			
						-		
					· ·			
		ā.,	1	GS2	<u> </u>	:: '		

				Table 2	7					
Former SCDOT Columbia Maintenance Facility	intenance	Facility						U,	SCDHEC Site ID # 07359	ID # 07359
3736 Marsteller Drive, Columbia, SC	nbia, SC							. 65	GS2 PROJECT # 09-3114-1	# 09-3114-1
		5,	SUMMARY OF SOIL ANALYTICAL RESULTS	OF SOIL AN	ALYTICAL R	ESULTS				
Sample ID		MW-28	MW-29	MW-30	MW-31	MW-32	MW-33	MW-34	MW-35	MW-36
Sample Date	RBSL	5/1/09	5/1/09	5/1/09	5/1/09	5/1/09	60/5/5	60/5/5	5/5/09	5/1/09
Depth (Feet)	mg/Kg	(5-10 ft.)	(5-10 ft.)	(0-5 ft.)	(5-10 ft.)	(5-10 ft.)	(5-10ft.)	(5-10ft.)	(0-5ft.)	(0-5 ft.)
Benzene (mg/Kg)	0.007	<0.0034	<0.0032	0.29	<0.0028	<0.0032	<0.0031	<0.0032	<0.0031	<0.150
Toluene (mg/Kg)	1.45	<0.0034	<0.0032	2.9	8900'0	0.0033	<0.0031	<0.0032	0.0033	1.2
Ethylbenzene (mg/Kg)	1.15	<0.0034	<0.0032	0.94	22000	<0.0032	<0.0031	<0.0032	7	0.54
Total Xylenes (mg/Kg)	14.5	<0.0034	<0.0032	3.1	0.053	<0.0032	<0.0031	<0.0032	0.0275	3.1
Naphthalene (mg/Kg)	0.036	<0.0034	<0.0032	0.47	0.013	0.004	<0.0031	<0.0032	0.034	5.0
Benzo(a) anthracene	0.066	NT	NT	NT	IN	IN	IN	IN	¥	¥
Benzo(b) flouranthene	0.066	NT	NT	NT	IN	IN	IN	IN	¥	Ī
Benzo(k) flouranthene	0.066	NT	NT	NT	IN	IN	IN	IN	Ā	¥
Chrysene	0.066	IN	NT	NT	₹N	IN	IN	IN	NT	IN
Dibenz(a,h) anthracene	0.066	IN	TN	IN	IN	¥	IN	IN	IN	ĬN
Notes: 1) Results reported in milligrams per kilogram = mg/Kg. 2) NT = Not Tested 3) BDL = Below Practical Detection Limits	per kilograi on Limits	m = mg/Kg.		FINCH LEGIS OF THE STATE OF THE	(All restances)					Page 1 of 3

Sample Date Counting Maintenance Facility Summary of Soil Any State May -35 May -35 May -35 May -35 May -36 May -36 May -36 May -36 May -36 May -37 May -36 May -3					Table 2	2					
MW-37 MW-38 MW-40 MW-41 MW-43 MW-43 MW-43 MW-44 MW-43 MW-43 MW-43 MW-44 MW-44 MW-44 MW-44 MW-44 MW-43 MW-43 MW-44 MW-4	Former SCDOT Columbia Mai	sintenance	Facility			Ī			•	SCDHEC Site	ID # 07359
MW-37 MW-38 MW-49 MW-41 MW-42 MW-42 MW-44 MW-42 MW-44 MW-45 MW-4	3736 Marsteller Drive, Colum	nbia, SC							SS SS	2 PROJECT #	109-3114-1
MW-37 MW-38 MW-40 MW-41 MW-42 MW-43 MW-44 MW-44 MW-45 MW-45 MW-46 MW-45 MW-45 MW-46 MW-45 MW-46 MW-45 MW-46 MW-46 MW-45 MW-46 MW-45 MW-46 MW-46 MW-45 MW-46 S/1/09				SUMMARY (OF SOIL AN	ALYTICAL R	ESULTS				
Fig. 1,109 5/1,09	Sample ID		MW-37	MW-38	MW-39	MW-40	MW-41	MW-42	MW-43	MW-44	MW-45
mg/kg 5-10 ft.) 5-10ft.) 5-10ft.) (0-5 ft.) (5-10 ft.) (Sample Date	RBSL	5/1/09	5/1/09	2/5/09	5/1/09	5/1/09	5/1/09	5/18/09	5/18/09	5/1/09
1.45 0.007 0.0035 0.026 3.8 0.0032 0.0032 0.0032 0.0023	Depth (Feet)	mg/Kg	(5-10 ft.)	(5-10 ft.)	5-10ft.)	(0-5 ft.)	(5-10 ft.)	(5-10 ft.)	(5-10 ft.)	(0-5 ft.)	(5-10 ft.)
1.45 0.0035 0.026 30 0.026 30 0.0038 0.0028 0.00	Benzene (mg/Kg)	0.007	<0.0035	<2.6	<0.038	<0.0031	3.8	<0.0032	<0.0038	<0.0028	<0.0027
L1.5 <0.0035	Toluene (mg/Kg)	1.45	<0.0035	<2.6	<0.038	0.026	30	<0.0032	<0.0038	<0.0028	<0.0027
g/kg) 14.5 0.0073 21.3 <0.038	Ethylbenzene (mg/Kg)	1.15	<0.0035	3.1	<0.038	0.014	9.8	<0.0032	<0.0038	<0.0028	<0.0027
g/kg) 0.036 8.8 <0.038	Total Xylenes (mg/Kg)	14.5	0.0073	21.3	<0.038	0.075	53	<0.0032	<0.0038	<0.0028	<0.0027
cene 0.066 NT NT <t< th=""><th>Naphthalene (mg/Kg)</th><th>0.036</th><th>0.0096</th><th>8.8</th><th><0.038</th><th>0.0072</th><th>7.3</th><th><0.0032</th><th><0.0038</th><th><0.0028</th><th><0.0027</th></t<>	Naphthalene (mg/Kg)	0.036	0.0096	8.8	<0.038	0.0072	7.3	<0.0032	<0.0038	<0.0028	<0.0027
tthene 0.066 NT	Benzo(a) anthracene	0.066	NŢ	NT	IN .	NT	NT	N	M	TN	Ā
trhene 0.066 NT	Benzo(b) flouranthene	0.066	NT	NT	NT	NT	NT	¥	N	IN	N
racene 0.066 NT	Benzo(k) flouranthene	0.066	N⊥	IN	NT	NT	IN	¥	N	LN	M
I in milligrams per kilogram = mg/Kg. Letical Detection Limits Page 2 of	Chrysene	0.066	LN.	NT	NT	NT	NT	N	IN	N	¥
In milligrams per kilogram = mg/Kg. (Citical Detection Limits Page 2 of	Dibenz(a,h) anthracene	0.066	NT	N	IN	NT	NT	F	NT	IN	IN
ENGINERING 6. EVURPRANCEITAL CONCULTANTS, ENC.	Notes: 1) Results reported in milligrams 2) NT = Not Tested	s per kilograı			CSS						
Page 2 of 3	3) BDL = Below Practical Detectic	on Limits		±	NGINERING & ERVIRG Constiltants.r	NAMERITAL NC.					
					·					_	age 2 of 3

)		
Former SCDOT Columbia Maintenance Facility	intenance	Facility				SCDHEC Site ID # 07359	: ID # 07359
3/30 Marsteller Drive, Columbia, SC	nbia, SC					GS2 PROJECT # 09-3114-1	# 09-3114-1
			SUMMARY	OF SOIL AN	SUMMARY OF SOIL ANALYTICAL RESULTS	SULTS	
Sample ID		MW-46	MW-47	MW-48	MW-49		
Sample Date	RBSL	60/5/5	5/28/09	5/1/09	5/1/09		
Depth (Feet)	mg/Kg	(5-10ft.)	(5-10ft.)	(5-10 ft.)	(5-10 ft.)		
Benzene (mg/Kg)	0.007	<0.0031	<0.0030	<0.0036	<0.0031		
Toluene (mg/Kg)	1.45	<0.0031	0.0035	<0.0036	0.0084		
Ethylbenzene (mg/Kg)	1.15	0.0039	<0.0030	<0.0036	0.036		i
Totał Xylenes (mg/Kg)	14.5	<0.0031	<0.0073	<0.0036	860.0		
Naphthalene (mg/Kg)	0.036	<0.0031	<0.0030	<0.0036	0.035		
Benzo(a) anthracene	0.066	NT	NT	IN	IN		
Benzo(b) flouranthene	0.066	NT	NŢ	NT	Ę		
Benzo(k) flouranthene	990'0	Ι	¥	IN.	¥		
Chrysene	990'0	Ā	¥	Į,	M		
Dibenz(a,h) anthracene	990'0	Ä	N	IN	ĭ		
Notes:							
 Results reported in milligrams per kilogram = mg/ 	s per kilograi	n = mg/Kg.		5	6		
2) NT = Not Tested				ろう	7		
3) BDL = Below Practical Detection Limits	on Limits			nointeand <mark>a tha redantan as</mark> Consolands Inc	prožinias Nij		
						-	Page 3 of 3

TABLE 3

Former SCDOT Columbia Maintenance Facility

SITE ID# 07359

		GROUNDWATI		THE SOLVING	T
Sample ID	Depth (Feet)	Total Depth (Feet)	Boring Method	PID Reading	Comments
TMW-1	20	20	MacroCore	30	1' of product
TMW-2	18	38	MacroCore	650	3' of product
TMW-3	20	58	MacroCore	900	strong PT odor
TMW-4	20	78	MacroCore	200	
TMW-5	20	98	MacroCore	175	
TMW-6	22	120	MacroCore	90	
TMW-7	22	142	MacroCore	25	
TMW-8	22	164	MacroCore	7	
TMW-9	20	184	MacroCore	15	
TMW-10	20	204	MacroCore	10	
TMW-11	20	224	MacroCore	200	
TMW-12	20	244	MacroCore	BDL	
ΓMW-13	20	264	MacroCore	350	strong PT odor
MW-14	21	285	MacroCore	10	
TMW-15	20	305	MacroCore	1300	product; strong PT odor
ΓMW-16	22	327	MacroCore	600	product; strong PT odor
ΓMW-17	20	347	MacroCore	180	strong PT odor
MW-18	20	367	MacroCore	5	
TMW-19	20	387	MacroCore	BDL	
5W-1	35	422	GW Sampler	5	
6W-2	45	467	GW Sampler	50	
6W-3	55	522	GW Sampler	30	
6W-4	61	583	GW Sampler	75	Probe Refusal
6W-5	40	623	GW Sampler	25	
6W-6	50	673	GW Sampler	N/A	Probe Refusal/ Dry Hole
			CCD		
		r _N	GINELBING & ENVIRONMENTA CONSELENTS INC.	a,	

TABLE 4

Former SCDOT Columbia Maintenance Facility 3736 Marsteller Drive, Columbia, SC

Site ID # 07359 GS2 Project # 09-3114-1

GROUNDWATER ANALYTICAL SCREENING SUMMARY

SAMPLE ID	Sample Date	Benzene 5 µg/L	Toluene 1000 μg/L	Ethylbenzene 700 μg/L	Total Xylene 10000 µg/L	Total BTEX μg/L	NAPTH 25 μg/L	MTBE 40 μg/L
TMW-12	4/17	16	BDL	BDL	BDL	16	BDL	301.8
TMW-14	4/17	BDL	BDL	BDL	BDL	BDL	110	308.5
TMW-17	4/17	7600	31000	3000	14800	28500	1300	613.8
TMW-18	4/17	BDL	BDL	BDL	BDL	BDL	BDL	311
TMW - 19	4/17	10	39	7.8	42	97.8	BDL	308.5
		,						
								•••
			· ·					
							'."	
		-			-			
				-				. <u>.</u>
								••••
								_
	1							
	-			·				<u> </u>
								<u> </u>
								
	-							
								
							-	
		+	-					
- ·								
								
								
								
		 						
 IOTES:								

- 1) BDL= Below Practical Reporting Limit
- 2) Total Xylene= m,p- Xylene + o- Xylene
- 3) (µg/L)= micrograms/Liter
- 4) Total BTEX = Benzene+ Toluene+ Ethylbenzene+ Xylene
- 5) (µg/L)=RBSL (RISK BASED SCREENING LEVEL)

FORMER SCDOT COLUMBIA MAINTENANCE FACILITY	эсрот с	OLUME	IIA MAINT	FINANCE	FACILITY						TABLE 5	5								E SE	CITE IN # 073ED	6 2 5		
GS2 PROJECT # 09-3114-1	ECT # 05	-3114-							9	iround	Groundwater Sampling Log	ampli	ng Log							Same	led by	Sampled by: L. Lee.	D. Kiem	Ε
										initial	画	十	~	1st Volume	ae B	F	Z	2nd Volume	_			Final		Ī
Well ID	Date	Time	Depth to Product	Depth to Water (Feet)	Product Thickness	Total Depth (Feet)	Ferrous Iron (mg/L)	Dissolved CO2 (mg/L)	Temp	рН	Cond	DO	pH Temp	Cond	DO	Temp	рН	Cond	DO	Temp	рН	Cond	DO	Total Purge Volume
MW-1	5/27	1305		15.03				35	23.0	5.36 1	100.1	1.41	+	+	+	╀	ig		\perp	\prod	İ			
MW-1R	5/27	1250		15.71				16.25		5.26	75.1	1.67	+			+	-		\perp		T			
MW-2	ABD	ABD		ABD						-	т	-	+	+	+	╀	+		\downarrow					
MW-2R	5/29	1235		14.51				8.75	21.8	6.14	73.7	1.69	+	-	H	+	\downarrow		\perp		1			
MW-3	5/26	1110		16.86				43.75	21.5	5.96 1	1	1.67	\vdash	-	+	+	-				1			
MW-4	5/27	1730		14.44			_	26.25	22.27	4.71 1	103.2	2.63	+	\vdash	-	\vdash	\perp		1		1			
MW-5	5/26	1100		18.01				21.25	22.4	4.87	99.3	1.78	+	-	<u> </u> 	-	_				_		T	
MW-6	2/56	1630		13.7				46.25	23.6	4.91	105.6	1.49	24 4.89	89 109.	9.6 1.81	1 24	4.93	105.7	1.81	23	4 99	108 R	1.5	a
MW-7	5/26	1400		14.03				50+	21.7	6.47 11	1175.0 1	1.43	21 6.51	51 1040.0	ч	9 21	9	+-	1.55	22		820.0	1 2	2 2
MW-8	5/28	1010		3.89				30÷	21.6	6.90	708.0	1.42	19 6.94	94 824.0	4.0 0.89	91	_	∞	0.87	19	┸	813.0	103	2
MW-9	5/28	1445		2.54				20	23.2	5.42	61.4	43	19 5.25	25 45	.5 1.86		1	٠	2.87	18	47	44.2	4.01	- -
MW-10	5/27	945		12.58		25.51		12.5	23.4	5.28	57.0 1	1.84	23 5.35	35 95.	.5 1.78	8 23	5.25		1.43	23	5.29	57.8	161	-
MW-11	5/28	1645		18.92				11.25	19.5	4.80	111.2 4	4.63	\vdash			Ц.	1-	<u>L.</u>			1			,
MW-12	5/28	915		8.5				20	23.1 5	5.21	73.7	3.19 2	22 4.84	34 58.	.3 3.12	22 22	4.86	58.0	3.21	21	4.82	58.2	3.22	æ
MW-13	5/28	1045		2.94				16.25	20.5 5	5.44 8	82.5	2.51 2	20 5.09	0.89 60	70.7	7 19	5.25	68.0	4.26	21	5,14	0.69	2.65	8.5
MW-14	5/28	1515		5.66				16.25	20.3 4	4.86 7	79.1	2.29 2	21 4.79	79 53.	.7 2.91	1 20	4.74	48.6	3.87	20	5.12	52.8	4.62	7 6
MW-15	2/28	1250		15.85				32.5	22.8 5	5.13 7	75.4 2	2.17	-			ļ	_							
MW-16	5/28	1315		3.53				8.75	20.0	6.87	184.9	1.76	19 6.88	38 140.5	1.5 2.51	1 19	6.87	141.5	2.27	19	6.87	141.5	2.61	10.5
MW-17	5/28	1340		96'9				21.25	21.3 5	5.78 9	90.1	1.84 2	21 6.04	14 92.2	.2 2.26	6 21	6.07	94.0	2.11	21	6.14	~	2.25	6
MW-18D	ž	₹		Z										_		L-					_		T	
MW-19	5/29	945	14.74	14.75	0.01					-		-		\vdash	<u> </u>						\dagger		†	
MW-20	2/29	1330		13.85				11.25	21.6	6.14 9	92.7	1.08	\vdash		-						†		T	
MW-21	5/29	1350		14.75				20+ 2	21.6 5	5.80 17	177.4	1.62		L		<u> </u>					\dagger			T
MW-22	5/29	1340	ĺ	15.11				20+	21.4 5	5.96, 14	143.5 1	1.69	-			_					1		+	
MW-23	5/29	1255		14.65				20+ 2	22.3 6	6.05 20	201.5	1.74	_		-						\dagger	-	+	
Notes:					·						1	-	4) T	otal Pur	ge Volun	ne is e	stimate	4) Total Purge Volume is estimated in gallons	ہِ [1	1	1	Ī
1) Depth to product and water measured from top of casing	product :	and wate	er measure	d from top	of casing				1		5		. (2	n g/t =m	5) mg/t =milligrams per liter	perlit	e		1					
2) Cond. = Conductivity	onductiv	<u>.</u>							J				<u>1</u> (9	(L = Not	6) NL = Not Located									
o) oo- Dissolved Oxygen	So nave	ua8)								CCNUATOR	CC WALKTANTS INC.		7) 8	BD= Bailed Dry	ed Dry							Pag	Page 1 of 3	·
											l											1		

EOBMER SCHOLL COLLINARIA MANINEENIANCE FACILITY	O TOW	aval 110	I A NAMINET	ENIANICE	TACE TO SE																			
GS2 PROJECT # 09-3114-1	CT#09	-3114-1	1	ריאיניב					Ğ	I ABLE 5 Groundwater Sampling I og	IABLE 5 Jater San	ongue	2							SITE ID	SITE ID # 07359	ء ج		
]	Initial			រុង	1st Volume			2nd Volume	<u>um</u> e	<u>`</u>	all big	Final] - -		Τ
Well ID	Date	Time	Depth to Product	Depth to Water (Feet)	Product Thickness	Total Fa Depth (Feet) (Ferrous D Iron (mg/L)	Dissolved CO2 (mg/L)	Temp	Cond	DO	Temp	рН	Cond	DO	Temp	pH	Cond	DO	Temp	рН		DO DO	Total Purge Volume
MW-24	2/59	930	14.0	15.42	1.42				T	-	 	L	_				\dagger	T	T	†	╀	T	+	
MW-25	5/29	1305		14.12				‡07	20.8	6.45 350	350.2 1.57	1,5					\vdash				\vdash	\vdash		
MW-26	5/27	1500	15.43	15.94	0.51				_	 	-						\vdash							
MW-27	5/29	1150		15.65				35	25.1 5	5.22 65	65.3 1.13	ū.					\vdash				\vdash	H		
MW-28	5/26	1130		17.36		23.9		21.25	21.5 5	5.66 93(936.0 1.45	15 21.7	7 5.69	7.86	1.57						-	\vdash	+	1.5 BD
MW-29	5/26	1030		17.85		24.9		\$0±	21.7 5	5.52 140	140.5 1.53	3 21.6	6 5.53	112.4	2.72					\vdash	\vdash		-	1.5BD
MW-30	5/29	1215		16.8		24.22		72	21.0 5	5.29 77	77.6 1.43	13 21.6	6 5.22	68.4	1.02	20.3	5.10	56.4 (0.06	20.2 5.	5.21 5	57.5	90.0	g
MW-31	5/29	1115		16.15		24.85		32.5	23.7 5	5.41 134.3	4.3 1.35	3									_		<u> </u>	4 BD
MW-32	5/29	1409		15.15		24.56		50+	21.9 6	6.61 358.1	8.1 1.08	8 21.0	0 6.58	352.0	0.83	21.2 6.50		335.7	1.33	-			_	9
MW-33	5/26	1345		14.91		24.74		26.25	20.7 6	6.02 262.2	2.2 1.63	3 20.5	5 5.68	230.1	1.50		_	 		\vdash	\vdash		<u> '''</u>	3 BD
MW-34	5/26	1330		14.72		24.72		43.75	21.6 6	6.55 277.7	7.7 1.48	13 21.1	1 6.51	255.7	1.44		\vdash	 				-		2 BD
MW-35	5/27	1400		16.5		24.78		30+	21.6 4	4.19 889.0	9.0 1.40	10 21.8	8 4.09	802.0	1.46								E.	3.5 BD
MW-36	5/29	940	14.96	17.21	2.25	24.21				_											_			
MW-37	5/29	1440		17.57		24.48		16.25	23.8 5	5.89 185	185.5 0.69	9 23.6	6 5.74	155.6	1.38	23.3	5.72	152.3	1.83 2	24.3 5.	5.72 15	157.3	1.57	9
MW-38	5/26	1530		13.89		24.81		62.5	23.2 6	6.04 32.9	9 1.37	7 23.2	2 5.78	12.6	1.08	23.9	5.88	15.6	1.29 2	23.8 6.	6.00	19.7	1.66	88
MW-39	5/27	1320		16.12		24.51		25	21.9 4	4.96 110	110.3 1.29		0 4.90	22.0 4.90 1065.0	1.56							<u> </u>		2 BD
MW-40	5/29	920		14.84		24.63		33.75	21.8 5	5.51 101.0	1.0 1.42	5							\vdash		\ \			2
MW-41	5/29	935		14.83		24.31		20+	22.6 5	5.78 123.5	3.5 1.42	7								<u> </u>	_			5
MW-42	5/27	836		16.36		24.66		35 7	23.5 4	4.45 113.4	3.4 1.59	9 23.5	5 4.87	80.3	1.39	•				<u> </u>		-	ļ <u> </u>	4 BD
MW-43	5/26	1551		13.49		25.09		, 20+	21.2 4	4.91 286.3	5.3 1.78	8 21.7	7 4.88	313.2	2.31	21.6	4.82	304.4	2.05	21.6 4.	4.78 332	6	2.63	9
MW-44	5/26	1600		14.35		25.4		31.25	20.4	4.92 86.2	.2 3.01	1 20.1	1 4.84	84.6	3.11	70.6	4.99	80.1	2.65 2	20.8 4.	4.97	78.1	2.45	∞
MW-45	5/26	1700		17.09		24.43		37.5+ 2	23.5 5	5.01 80.5	.5 1.35	5 23.2	2 4.96	71.4	1.40						_	-	("	3 BD
MW-46	5/27	1240		14.34		24.55		22.5	24.0 5	5.46 89.3	\neg	1.30 23.8	8 5.25	80.8	1.80	23.8	5.34	75.4	2.18		_		4	4.5 BD
MW-47	5/27	1130		14.51		24.64		33.75	24.4 5.27	_	124.6 1.5	8 23.	1.58 23.9 5.22	126.0	1.38								(17)	3 BD
MW-48	5/27	915		14.36		24.83	1	16.25	23.9 5	5.05 80	80.7 1.19 23.9 5.12	9 23.5	95.12	74.3		1.75 23.8 5.09		82.3	2.27				4	4.5 BD
Notes:								ı		\	1		4) To	4) Total Purge Volume is estimated in gallons	Volume	is esti	mated in	snolleg (_ ا					
1) Depth to product and water measured from top of casing	product	and wat.	er measure	d from top	o of casing				I.				5) mg	5) mg/t =milligrams per liter	yams p	er liter								*
2) cond. = conductivity	ייייס שעורני אכן הפעור	III Y							Jan	HEING & DRUGGERM STAL	(64;M(787A)		Z 6	6) NL = Not Located	cated							•		
200	3	186.						1				4	7 00	/i eu= Bailed ury	4							72gc	Page 2 of 3	<u>_</u>

SCDHEC IFB-37166-11/5/09-EMW Page: 35

Mail Date Time Product West Product Produc	FORMER SCDOT COLUMBIA MAINTENANCE FACILITY	SCDOT	COLUMI	SIA MAIN	TENANCE	FACILITY					TABLE	S								SITE	SITE ID # 07359	7359		
Well to Depth by Product Time Depth by Product Time Depth by Product Depth	GSZ PROJ	ECT # 05	9-3114-						<u>ن</u> ا	iround	water S	amplin	g Log							Sam	a pala	v: L. Lee	D. Kr	Ę
Well ID Date Time Time Depth to Water Time Product (Feet)									L	init	<u>la</u>	卜		st Volu	 =	H	٦	d Volum	١.	L		inal		
MW-49 5/27 1030 13.29 24.41 3.96 42.5 4.77 12.57 11.9 24.1 4.91 14.65 11.21 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	Well ID	Date	Time					 Dissolved CO2 (mg/L)	Temp	pH	Cond			nH			<u> </u>	Cond		Temp	TI .	Cond	DO	Total Purge Volume
DW-4 6/5 1640 16.86 59.83 6.25 24.4 7.29 107.7 38.8 42.1 7.22 107.7 38.8 42.1 7.29 107.7 31.9 12.9 12.2 107.1 31.9 23.9 23.8 17.1 10.0 10.0 10.0 10.0 10.0 10.0 10.0 63.8 8.75 22.1 80.9 17.2 80.9 17.2 80.0 18.7 13.2 10.2 80.0 18.7 10.2 80.0 18.7 10.2 10.2 10.2 80.0 18.7 10.0	MW-49	2/27	1030		13.29		24.41	30+	24.5	_	_	1.19 24			_	17	╁		╀	_	L			2.5 BD
DW-2 6/8 935 17.79 61.11 6.25 23.1 903 134.9 36.1 23.8 899 181.5 36.1 23.8 8.91 191.6 32.2 3.2.1 3.91 191.6 3.92 3.2.3 3.1 3.9	DW-1	6/5	1640		16.86		59.83	6.25	24.4		_	3.83 24			-				1			_	3.69	2
300 37.08 55.77 304 25.5 8.90 158.7 5.12 24.7 8.79 162.3 5.21 22.1 8.78 165.3 5.22 23.2 8.34 188 200 16.85 63.11 8.75 24.4 7.38 108.7 44.2 23.5 7.12 10.22 4.56 23.1 7.37 10.93 74.2 98 300 16.85 63.11 8.75 25.7 7.64 135.2 1.61 25.3 7.55 135.1 1.67 24.9 7.75 135.2 17.7 7.2 19.0 10.9 7 1.0 10.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	DW-2	8/9	935		17.79		61.11	6.25	23.1				8:8		$\overline{}$			_	_				4.16	18
DW4 6 65 1820 16.10 63.8 8.75 22.1 6.98 79.1 3.86 23.2 7.05 76.4 3.80 23.8 6.91 71.8 3.8 12.9 6.83 6.9 6.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DW-3	8/9	1030		37.08		55.77	30+	25.5				1.78.						+				5 31	2 2
DW-5 6/5 1310 16.67 61.02 594 24.4 7.38 108.7 4.58 23.1 7.37 103.7 4.58 23.1 7.37 135.2 1.35	DW-4	6/5	1820		16.10		63.8	8.75	22.1			3.86 23		1	-			l l	-			_	3.77	2 2
DW-6 6/5 1730 16.85 63.11 8.75 25.7 7.64 135.2 1.61 25.3 7.55 135.1 1.67 24.9 7.75 135.5 1.79 25.1 7.92 134.5 134.5 13	DW-5	6/2	1910		16.67		61.02	50÷	24.4		_				1				_		_		4 69	2
SW-1 Sy28 1100		6/5	1730		16.85		63.11	8.75	25.7	7.64	-		_		1				_			Щ.	1.78	2 2
water measured from top of casing Toverstand from top of casing		5/28	1100										\vdash		1				-			.1.		
Maler measured from top of casing TOTAL TOTAL Purge Volume is estimated in gallons 5) mg/L = milligrams per liter 6) NL = Not Located 1) 802- Bailed Dry													$^{+}$	ŀ	+	╀	+		┼				Ì	
Aler measured from top of casing CONTRIBUTED TO STATE TO										+		i	+	+	H	╀	+	\downarrow	\downarrow	1				ŀ
water measured from top of casing A) Total Purge Volume is estimated in gallons S) mg/L = Milligrams per liter G) NL = Not Located 7) 80= Bailed Dry										+	\dagger		+	+	+	┿	+	1	\downarrow	1				
water measured from top of casing CCS S) mg/L =milligrams per liter (5) NL = Not Located T) 80- Bailed Dry										\dagger	1	1	+	+		+	\dashv		\downarrow	4				
water measured from top of casing Contributions of casing Contributions of casing A) Total Purge Volume is estimated in gallons S) mg/L = miligrams per liter G) NL = Not Located T) BD= Bailed Dry										\dashv	+		_			4	_							
### water measured from top of casing Total Purge Volume is estimated in gallons S) mg/L = milligrams per liter G) NL = Not Located Total Purge Volume is estimated in gallons S) mg/L = milligrams per liter G) NL = Not Located Total Purge Volume is estimated in gallons S) mg/L = milligrams per liter G) NL = Not Located Total Purge Volume is estimated in gallons S) mg/L = milligrams per liter G) NL = Not Located Total Purge Volume is estimated in gallons S) mg/L = milligrams per liter S) mg/L = mg/																								
Water measured from top of casing COST A Total Purge Volume is estimated in gallons S mg/L = miligrams per liter S mg/L =					٠									-			_	L	_					
water measured from top of casing CASO S) mg/L = miligrams per liter 6) NL = Not Located 1) 8D= Bailed Dry 1) 8D= Bailed Dry															<u> </u>	_	_	L						
### ### ##############################										-			<u> </u>	_	_	H	-		-					
water measured from top of casing CCSS 5) mg/L = milligrams per liter 6) NL = Not Located 7) 8D= Bailed Dry												<u> </u>	H	<u> </u>		-	-		_					
water measured from top of casing CGSS S) mg/L = miligrams per liter 6) NL = Not Located 7) 80= Bailed Dry																	\vdash			L				
water measured from top of casing Alternation Alterna						-				\vdash		┝	-		\vdash	╀	-							
water measured from top of casing Constitution of casing A) Total Purge Volume is estimated in gallons 5) mg/L = milligrams per liter 6) NL = Not Located 7) BD= Bailed Dry											-	<u> </u>	╁╴	-	├	+								
water measured from top of casing (CSS) (A) Total Purge Volume is estimated in gallons (S) mg/L = milligrams per liter (G) NL = Not Located (7) B0= Bailed Dry											-		H	L		┞	L		_					
water measured from top of casing CCSC STREET CONTRIBUTION CONTRIBUTI										-			\vdash	-		╀	$oxed{\perp}$	L					T	
water measured from top of casing CCSC S) mg/L = milligrams per liter 5) mg/L = milligrams per liter 6) NL = Not Located 7) BD= Bailed Dry										\vdash		<u> </u>			<u> </u>	┞		_						
water measured from top of casing (GS2) mg/L = milligrams per liter 5) mg/L = milligrams per liter 6) NL = Not Located 7) BD= Bailed Dry																								
water measured from top of casing (ACT) water measured from the case of casing (ACT) water measured from the case of casing (ACT) water measured from the case of case													_				<u> </u>						İ	
Mater measured from top of casing Spans per liter (Spans transferance and the control of the co	Notes:									1			- (4)	Total Pur	rge Volu	me is e	stimat	ed in gall	suc				1	
CHOPPERSON PROPERTY (A) BD= Bailed Dry	1) Depth to	product	and wat	er measure	ed from ta	p of casing			T		3	,	5)	mg/L=π	ıilligram	s per li	ter							
/j bJ= balled Uly	3) DO= Diss	olved Ox	veen						NON1	REXING & DE CONSULTAN	saksayasaya Usuba	37	G F	NL = Not	Locate	-						•	·	
												1		- Da	בות הוא							2	rage 3 or 3	2

_		_	, , , , , , , , , , , , , , , , , , ,			γ	, .		,		-													
TABLE 6	SCDHEC Site ID # 07359 GS2 Project # 09-3114-1		Total Lead (μg/l)	15	4.68	1.95	ABD	260	26	<1.0	1.72	10.2	37.0	5,310	16.4	4.46	89.8	5.02	38.6	23.9		6) Bolded concentrations exceed RBSL's	7) BDL = Below Practical Detection Limits	Page 1 of 4
			1, 2 DCA (mg/l)	n/a	<5.0	<5.0	ABD	005>	<500	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0				
			EDB (μg/l)	0.05	<0.021	<0.021	ABD	7.50	15.7	<0.020	<0.021	1.89	<0.021	<0.021	<0.020	<0.021	<0.020	<0.020	<0.020	<0.020	lethyl-Tertia	ncentration	ow Practical	
		MARY CoC)	MTBE (μg/l)	40	<5.0	<5.0	ABD	005>	<500	<5.0	<5.0	<5.0	\$	53	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	5) MTBE = M	6) Bolded co	7) BDL = Bel	
		GROUNDWATER ANALYTICAL RESULTS (PRIMARY CoC)	Napthalene (μg/l)	25	<5.0	<5.0	ABD	025	200	<5.0	<5.0	750	11	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0			NUNEFRING & ENVIRGNMENTAL CONSULTANTS, INC	2010
	Pi	NALYTICAL R	Total BTEX (μg/l)	n/a	108	TOB	ABD	19,900	29,900	108	16	2,280	1,784	108	BDL	BDL	BDL	BDL	BDL	BDL				CONSUITANTS, INC.
		DWATER A	Total Xylenes (μg/l)	10,000	<5.0	<5.0	ABD	8,700	10,900	<5.0	<5.0	820	784	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0				10 No.
		4	Ethylbenzene (μg/l)	200	<5.0	<5.0	ABD	1,700	1,800	<5.0	<5.0	550	160	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	1) µg/l = micrograms per liter	liter		
	Former SCDOT Columbia Maintenance Facility 3736 Marsteller Drive, Columbia, South Carolina	SUMMARY O	Toluene (μg/l)	1,000	<5.0	<5.0	ABD	8,100	14,000	<5.0	<5.0	270	140	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0				ocated
	ia Maintena Columbia, S		Benzene (µg/l)	2	<5.0	<5.0	ABD	1,400	3,200	<5.0	16	640	1,200	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		lligrams per	Tested	
	Former SCDOT Columbia Maintenance Facility 3736 Marsteller Drive, Columbia, South Carolii		Sample Date		02/27/09	02/27/09	ABD	05/29/09	02/56/09	05/27/09	02/56/09	02/56/09	02/56/09	02/28/09	02/58/09	05/27/09	02/58/09	02/58/09	02/28/09	02/28/09	1) $\mu g/l = mi$	2)mg/l = milligrams per liter	3) NT = Not Tested 4) NL= Not Located	4) NL= Not Located
	Former SCI 3736 Marst		Well ID	RBSL	MW-1	MW-1R	MW-2	MW-2R	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	6-MW	MW-10	MW-11	MW-12	MW-13	MW-14	Notes:			

					TAF	TARIFE					
Former SCI 3736 Marst	Former SCDOT Columbia Maintenance Facility 3736 Marsteller Drive, Columbia, South Caroli	ia Maintena Columbia, S	Former SCDOT Columbia Maintenance Facility 3736 Marsteller Drive, Columbia, South Carolina	o,		•				SCDHEC Site ID # 07359	SCDHEC Site ID # 07359
			SU	MIMARY OF	GROUNDW	SUMMARY OF GROUNDWATER ANALYTICAL RESULTS	TICAL RESU	ILTS		122/01/1200	1-417-00 #
Well ID	Sample Date	Benzene (µg/I)	Toluene (μg/l)	Ethylbenzene (µg/l)	Total Xylenes (μg/l)	Total BTEX (μg/l)	Napthalene (μg/l)	MTBE (μg/l)	EDB (µg/l)	1, 2 DCA (mg/l)	Total Lead (μg/l)
RBSL		5	1,000	700	10,000	n/a	25	9	0.05	n/a	15
MW-15	02/58/09	<5.0	<5.0	<5.0	<5.0	BDL	<5.0	<5.0	<0.020	<5.0	559
MW-16	02/58/09	<5.0	<5.0	<5.0	<5.0	BDL	<5.0	<5.0	<0.020	<5.0	6.45
MW-17	02/58/09	<5.0	<5.0	<5.0	<5.0	BDL	<5.0	<5.0	0.046	<5.0	2.07
MW-18D	ABD	ABD	ABD	ABD	ABD	ABD	ABD	ABD	ABD	ABD	ABD
MW-19	06/01/09	29,000	31,000	<2500	13,100	73,100	<2500	<2500	650	<2500	1040
MW-20	02/53/09	810	3,800	410	3,030	8,050	120	<5.0	4.54	<5.0	161
MW-21	02/53/09	2,300	3,300	530	2,680	8,810	<500	<500	11.5	<500	181
MW-22	02/53/09	5,300	17,000	<2500	12,000	34,300	<2500	<2500	63.8	<2500	1620
MW-23	02/53/09	72	580	290	1,560	2,502	68	<5.0	0.219	<5.0	21.2
MW-24	02/53/09	8,600	30,000	3,400	18,600	60,600	<2500	<2500	133	<2500	447
MW-25	02/53/09	1,500	9,100	1,800	8,400	20,800	<500	<500	3.71	<500	84.3
MW-26	05/27/09	6,500	6,900	2,200	7,800	23,400	069	470	42.8	7.5	99.1
MW-27	02/53/09	9,300	11,000	1,100	2,600	27,000	350	<250	190	<250	242
MW-28	02/56/09	<5.0	<5.0	<5.0	<5.0	BDL	<5.0	<5.0	<0.021	<5.0	198
MW-29	05/26/09	2,500	8,400	1,700	9,000	21,600	1,000	20	9.50	7.3	108
MW-30	02/56/09	25,000	34,000	3,000	16,200	78,200	<2500	<2500	852	<2500	962
Notes:	1) $\mu g/l = micrograms per liter$	rograms pe	r liter					5) MTBE = N	5) MTBE = Methyi-Tertiary-Butyl Ether	iry-Butyl Eth	-i-
	2)mg/l = milligrams per liter	ligrams per i	liter				~\	6) Bolded cc	6) Bolded concentrations exceed RBSL's	s exceed RBS	,,,s
	3) NT = Not Tested	Tested			J. RONB	NONEERING & ENVIRONMENTAL	ENTAL	7) BDL = Bel	7) BDL = Below Practical Detection Limits	Detection Li	mits
	4) NL= Not Located	ocated				CONSULTANTS, INC					Page 2 of 4

1,000						TAB	TABLE 6					
Date Sample Sam	Former SCI	OOT Columbi	ia Maintena Folumbia Se	ince Facility	a						SCDHEC Site ID # 07359	ID # 07359
10 Sample			o financial co		- 15	1000	100 G124				usz Project # 09-3114-1	# 09-5114-1
Date Example Exampl					WIMMEN OF	GROUNDW.	A LEK ANAL)	I ICAL KESU	- 12			
1. 5 1,000 700 10,000 n/a 25 3.1 05/29/09 550 34 711 94 3.2 05/29/09 8,400 15,000 <2500	WellID	Sample			•						1, 2 DCA (mg/l)	Total Lead (μg/l)
31 05/29/09 550 34 83 44 711 94 32 05/29/09 8,400 15,000 <2500 9,900 33,300 <2500 33 05/26/09 950 830 130 380 2,290 50 34 05/26/09 1,900 1,500 2,800 13,800 45,400 150 35 05/27/09 5,200 20,000 2,800 13,800 41,800 7500 36 05/29/09 7,500 21,000 2,700 14,300 45,500 <2500 38 05/22/09 3,800 1,800 1,600 3,240 10,440 600 39 05/22/09 11,000 18,000 2,300 12,700 44,000 600 40 05/22/09 380 26 14 62 482 8.8 41 05/26/09 45,00 12,000 1,600 4,000 6,50 44 05/26/09 6,	RBSL		5	1,000	700	10,000	n/a	25	40	0.05	e/u	15
32 05/29/09 8,400 15,000 62500 33 05/26/09 950 830 130 380 2,290 50 34 05/26/09 1,900 1,500 280 860 4,540 150 35 05/27/09 5,200 20,000 2,800 13,800 41,800 7500 37 05/29/09 7,500 21,000 2,700 14,300 45,500 625000 35 05/27/09 68 14,000 2,700 14,300 45,500 62500 36 05/29/09 11,000 1,800 1,600 3,240 10,440 600 39 05/27/09 68 14,000 2,300 12,700 44,000 690 41 05/29/09 380 26 14 62 88 42 05/27/09 62000 37 05/26/09 6,100 12,000 1,600 6,900 26,000 500 44 05/26/09 6,100 12,000 1,600 6,900 26,600 570 45 05/26/09 6,100 12,000 1,600 6,900 26,600 570 46 05/26/09 6,100 12,000 1,600 6,900 26,600 570 47 05/26/09 150 120 170 570 1,010 120 48 05/26/09 3,000 4,400 400 2,290 10,090 60 49 05/27/09 3,000 4,400 400 2,290 10,090 60 40 05/27/09 1,001	MW-31	02/53/09	250	34	83	44	711	94	17	0.451	15	36
33 05/26/09 950 830 130 380 2,290 50 34 05/26/09 1,900 1,500 280 860 4,540 150 35 05/27/09 5,200 20,000 2,800 13,800 41,800 760 36 05/29/09 19,000 41,000 2,700 14,300 45,500 <2500 38 05/26/09 3,800 1,800 1,600 3,240 10,440 600 39 05/27/09 68 14 23 33 138 <5.0 40 05/29/09 11,000 18,000 2,300 12,700 44,000 690 41 05/29/09 6,100 12,000 1,600 6,900 26,600 570 42 05/27/09 <5.0 <5.0 <5.0 <5.0 <5.0 8DL <5.0 43 05/26/09 6,100 12,000 1,600 6,900 26,600 570 44 05/26/09 6,100 12,000 1,600 6,900 26,600 570 45 05/26/09 150 120 170 570 1,010 120 46 05/27/09 3,000 4,400 400 2,290 10,090 60 1) µg/ = micrograms per liter 2 mg/l = milligrams per liter	MW-32	02/53/00	8,400	15,000	<2500	006'6	33,300	<2500	<2500	15.70	<2500	87.2
34 05/26/09 1,900 1,500 280 860 4,540 150 35 05/27/09 5,200 20,000 2,800 13,800 41,800 760 36 05/29/09 19,000 41,000 3,300 18,500 45,500 <2500	MW-33	02/56/09	950	830	130	380	2,290	20	47	9.92	35	472
35 05/27/09 5,200 20,000 2,800 13,800 41,800 760 36 05/29/09 19,000 41,000 3,300 18,500 81,800 <2500	MW-34	02/56/09	1,900	1,500	280	098	4,540	150	25	<0.020	<5.0	356
36 05/29/09 19,000 41,000 3,300 18,500 81,800 <2500 37 05/29/09 7,500 21,000 2,700 14,300 45,500 <2500	MW-35	02/22/00	5,200	20,000	2,800	13,800	41,800	760	<500	94.40	<500	304
37 05/29/09 7,500 21,000 2,700 14,300 45,500 <2500 38 05/26/09 3,800 1,800 1,600 3,240 10,440 600 39 05/26/09 68 14 23 33 138 <5.0	MW-36	02/53/09	19,000	41,000	3,300	18,500	81,800	<2500	<2500	318.0	<2500	411
38 05/26/09 3,800 1,800 1,600 3,240 10,440 600 39 05/27/09 68 14 23 33 138 <5.0 40 05/29/09 11,000 18,000 2,300 12,700 44,000 690 41 05/29/09 380 26 14 62 482 8.8 42 05/27/09 <5.0 <5.0 <5.0 <5.0 BDL <5.0 43 05/26/09 6,100 12,000 1,600 6,900 26,600 570 44 05/26/09 <5.0 <5.0 <5.0 <5.0 BDL <5.0 45 05/26/09 150 120 170 570 1,010 120 45 05/26/09 3,000 4,400 400 2,290 10,090 60	MW-37	02/53/00	2,500	21,000	2,700	14,300	45,500	<2500	<2500	103.0	<2500	258
39 05/27/09 68 14 23 33 138 <5.0 40 05/29/09 11,000 18,000 2,300 12,700 44,000 690 41 05/29/09 380 26 14 62 482 8.8 42 05/27/09 <5.0	MW-38	02/26/09	3,800	1,800	1,600	3,240	10,440	009	92	4.73	16	107
40 05/29/09 11,000 18,000 2,300 12,700 44,000 690 4000 42,000 2,300 12,700 44,000 690 4000 44,000 65,0 482 8.8 42 05/27/09 <5.0 <5.0 <5.0 85.0 85.0 85.0 45.0 45.0 45.0 85.0 85.0 85.0 85.0 85.0 85.0 85.0 8	MW-39	05/27/09	89	14	23	33	138	<5.0	<5.0	<0.020	<5.0	402
41 05/29/09 380 26 14 62 482 8.8 42 05/27/09 <5.0 <5.0 <5.0 <5.0 BDL <5.0 48 05/26/09 6,100 12,000 1,600 6,900 26,600 570 44 05/26/09 <5.0 <5.0 <5.0 <5.0 BDL <5.0 45 05/26/09 150 120 170 570 1,010 120 45 05/27/09 3,000 4,400 400 2,290 10,090 60 1	MW-40	02/53/09	11,000	18,000	2,300	12,700	44,000	069	<500	171.0	<500	522
42 05/27/09 <5.0 <5.0 <5.0 BDL <5.0 45.0 43.0 45.0 45.0 55.0 BDL <5.0 43.0 43 05/26/09 6,100 12,000 1,600 6,900 26,600 570 44 05/26/09 <5.0 <5.0 8DL <5.0 45.0 45.0 45.0 45.0 45.0 400 1,010 120 45 05/26/09 3,000 4,400 400 2,290 10,090 60 400 2,290 10,090 60 2) MT-Mat Total	MW-41	02/53/09	380	26	14	. 62	482	8.8	9.9	0.75	14	12.7
43 05/26/09 6,100 12,000 1,600 6,900 26,600 570 44 05/26/09 <5.0	MW-42	05/27/09	<5.0	<5.0	<5.0	<5.0	BDL	<5.0	<5.0	<0.020	<5.0	11.9
44 05/26/09 <5.0 <5.0 <5.0 BDL <5.0 45 05/26/09 150 120 170 570 1,010 120 120 1400 400 2,290 10,090 60 13 MT = milligrams per liter	MW-43	02/56/09	6,100	12,000	1,600	6,900	26,600	570	49	37.20	28	290
45 05/26/09 150 120 170 570 1,010 120 120 46 05/27/09 3,000 4,400 400 2,290 10,090 60 1) µg/l = micrograms per liter 2) mg/l = milligrams per liter	MW-44	02/56/09	<5.0	<5.0	<5.0	<5.0	BDL	<5.0	<5.0	<0.021	<5.0	270
46 05/27/09 3,000 4,400 400 2,290 10,090 60 1) μg/l = micrograms per liter 2)mg/l = milligrams per liter 3) NT = No.t Toctool	MW-45	02/26/09	150	120	170	570	1,010	120	<5.0	0.64	<5.0	293
1) µg/l = micrograms per liter 2) mg/l = milligrams per liter 3) NT = Not Tocked	MW-46	02/22/00	3,000	4,400	400	2,290	10,090	09	11	36.1	55	151
CSS	Notes:	1) µg/l = mic	programs pe	r liter					5) MTBE = N	Aethyl-Tertia	ry-Butyl Eth	Į.
		2)mg// = mil	ligrams per	liter					6) Bolded co	oncentration	s exceed RBS	IL's
J. In - Not rested		3) NT = Not Tested	Tested			J	RESIDENCE SE ENVIRONMENT	18881	7) BDL = Bel	ow Practical	Detection Li	mits
4) NL= Not Located		4) NL= Not L	ocated				CONSULTATE, MC			,		Page 3 of 4

SCDHEC Site 1D # 07359 GS2 Project # 09-3114-1 Page 4 of 4 **Total Lead** 55.8 108 118 69.9 1.39 72.8 154 2.07 (μg/l) BDL = Below Practical Detection Limits 6) Bolded concentrations exceed RBSL's7) BDL = Below Practical Detection Limit MTBE = Methyl-Tertiary-Butyl Ether 1, 2 DCA <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 (mg/I)<0.020 <0.020 <0.020 <0.021 <0.020 <0.020 0.228 <0.021 0.029 0.038 **EDB** $(\mu g/I)$ MTBE <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 (μg/l) SUMMARY OF GROUNDWATER ANALYTICAL RESULTS Napthalene <5.0 8 <5.0 1400 16 34 (µg/l) YGINEERING & ENVIRONMENTAL CONSULTANTS, INC 1,130 253.9 16.6 BDL **Total BTEX** 16.0 190 BDL BDL 380 BDL (µg/I) TABLE 6 10,000 <5.0 \$5.0 **Total Xylenes** <5.0 <5.0 <5.0 <5.0 234 9.6 163 (µg/I) <5.0 <5.0 <5.0 <5.0 <5.0 Ethylbenzene **5**.0 <5.0 180 34 34 (µg/I) 3736 Marsteller Drive, Columbia, South Carolina Former SCDOT Columbia Maintenance Facility 1,000 Toluene <5.0 <5.0 <5.0 <5.0 <5.0 280 48 97 (µg/l) µg/l = micrograms per liter 2)mg/l = milligrams per liter <5.0 <5.0 <5.0 <5.0 Benzene 200 190 <5.0 16 4) NL= Not Located 3) NT = Not Tested (µg/I) 05/27/09 05/27/09 05/27/09 60/80/90 60/80/90 60/80/90 60/50/90 60/50/90 06/04/09 05/28/09 Sample Date MW-49 MW-47 Well ID MW-48 DW-2 DW-3 DW-4 DW-5 9-MQ RBSL DW-1 SW-1 Notes:

				TABLE 6A			
Former SCDO	OT Columbia Ma	Former SCDOT Columbia Maintenance Facility				SCD	SCDHEC Site ID # 07359
3/36 Marstel	ller Drive, Colui	3/36 Warsteller Drive, Columbia, South Carolina	la			GS2	GS2 Project # 09-3114-1
	SUMI	SUMMARY OF GROUNDWATER ANALYTICAL RESULTS (NATURAL ATTENUATION PARAMETERS)	WATER ANALYTIC	AL RESULTS (NATU	RAL ATTENUATION	PARAMETERS)	
Well ID	Sample Date	DISSOLVED CO2 (µg/l)	DISSOLVED OXYGEN (µg/l)	NITRATE (µg/l)	SULFATE (µg/l)	METHANE (µg/l)	FERROUS IRON (µg/l)
RBSL		n/a	n/a	n/a	n/a	n/a	n/a
MW-1	02/27/09	35.00	1.41	IN	N	IN	IN
MW-1R	02/22/09	16.25	1.67	IN	IN	¥	Į.
MW-2	ABD	ABD	ABD	ABD	ABD	ABD	ABD
MW-2R	02/53/09	8.75	1.69	IN	ΙΝ	M	N
MW-3	02/56/09	43.75	1.67	IN	FN	E	IN
MW-4	05/27/09	26.25	2.63	NT	ŦN	ĬĀ.	IN
MW-5	05/26/09	21.25	1.78	NT	NT	Ε	IN
MW-6	05/56/09	46.25	1.51	IN	IN	Æ	IN
MW-7	02/56/09	Š0+	1.51	Ā	IN	M	IN
MW-8	02/28/09	30+	1.05	NT	N	IN	NT
MW-9	05/28/09	20.00	4.01	IN	IN	IN	N
MW-10	05/27/09	12.50	1.61	ŅŢ	K	IN	N
MW-11	02/28/09	11.25	4.63	NT	NT	¥	LN
MW-12	02/28/09	20.00	3.22	NT	IN	IN	NT
MW-13	05/28/09	16.25	2.65	Ę	IN	¥	TN
MW-14	02/28/09	16.25	4.62	NT	IN	IN	TN
Notes:	1) µg/l = micro	1) µg/l = micrograms per liter			5) MTBE = Methyl-Tertiary-Butyl Ether	Tertiary-Butyl Ethe	
	2)mg/l = milligrams per liter	rams per liter			6) Bolded concentrations exceed RBSL's	ations exceed RBSI	S.
	s) NI ≈ Not lested4) NL= Not Located	sted	RUM	ENGINELSTRA & ENVIRONMENTAL CONSTITUTAL SING	// BDL = Below Practical Detection Limits	ctical Detection Lin	
							tage 1 01 d

		,		TABLE 6A			
Former SCDO 3736 Marstell)T Columbia Mi ler Drive, Colu	Former SCDOT Columbia Maintenance Facility 3736 Marsteller Drive, Columbia, South Carolina			e e e e e e e e e e e e e e e e e e e	SCDF	SCDHEC Site ID # 07359
	SUMI	SUMMARY OF GROUNDW	WATER ANALYTICA	AL RESULTS (NATU	(ATER ANALYTICAL RESULTS (NATURAL ATTENUATION PARAMETERS)	PARAMETERS)	10,000
Well ID	Sample Date	DISSOLVED CO2 (µg/l)	DISSOLVED OXYGEN (µg/l)	NITRATE (µg/l)	SULFATE (μg/l)	METHANE (µg/l)	FERROUS IRON (µg/l)
RBSL		n/a	n/a	n/a	n/a	n/a	n/a
MW-15	05/28/09	32.50	2.17	IN	N	IN	NT
MW-16	05/28/09	8.75	2.61	IN.	LN.	TN	NT
MW-17	05/28/09	21.25	2.25	NT	M	TN	NT
MW-18D	NL	NL	NF	IN	IN	NT	NF
MW-19	05/29/09	PROD	PROD	ΤN	TN	NT	PROD
MW-20	05/53/09	11.25	1.08	LN	N	IN	IN
MW-21	05/29/09	20+	1.62	IN	NT	N	NT
MW-22	02/29/09	20+	1.69	IN	IN	NT	LN
MW-23	05/29/09	20+	1.74	IN	IN	IN	LN
MW-24	02/53/09	PROD	PROD	NT	LN	NT	PROD
MW-25	02/53/09	20+	1.57	NT	IN	TN	LN
MW-26	05/27/09	PROD	PROD	NT	IN	N	PROD
MW-27	05/59/09	35.00	1.13	NT	IN	N	TN
MW-28	02/56/09	21.25	1.57	NT	IN	N	LN L
MW-29	05/56/09	50+	2.72	NT	IN	Ł	N
MW-30	05/29/09	25.00	90.0	NT	IN	Σ	L
Notes:	1) µg/l = micro	1) µg/l = micrograms per liter			5) MTBE = Methy!-Tertiary-Butyl Ether	Fertiary-Butyl Ether	
	2)mg/l = milligrams per liter	rams per liter			6) Bolded concentrations exceed RBSL's	ations exceed RBSL	S
	4) NL= Not Located	sted ated	BNGME	ENGINEERIND & ENVIRONMENTAL CONSTITANTS, INC.	// BDL = Below Practical Detection Limits	ctical Detection Lim	lits Page 2 of 4
							Tage 2 OI +

Former SCDOT Columbia Maintenance Facility State Marsteller Drive, Columbia, South Carolino Anna Case Marsteller Drive, Columbia, South Case Marsteller Drive, Columbia, South Case Marsteller Drive, Columbia, South Case Marsteller Drive, Columbia, South Case Marsteller Drive, Columbia, South Case Marsteller Drive, Columbia, South Case Marsteller Drive, Columbia, South Case Marsteller Drive, Columbia, South Case Marsteller Drive, Columbia, South Case Marsteller Drive, Columbia, South Case Marsteller Drive, Columbia, South Case Marsteller Drive, Ca					TABLE 6A			
DISSOLVED DISSOLVED DISSOLVED CO2 OXYGEN (Hg/I) (Hg/	Former SCD(OT Columbia Ma Nec Drive Colum	aintenance Facility	,			SCDI	SCDHEC Site ID # 07359
DISSOLVED DISSOLVED DISSOLVED NITRATE	DO MINIST	iller Dilve, Colu	mbra, south carolif	la			GS2 I	GS2 Project # 09-3114-1
DISSOLVED DISSOLVED NITRATE		ilos L	MARY OF GROUND	WATER ANALYTICA	AL RESULTS (NATUI	SAL ATTENUATION	PARAMETERS)	
BSL n/a n/a n/a n/a N-31 05/29/09 32.50 1.35 NT N-32 05/29/09 20+ 1.33 NT N-33 05/26/09 26.25 1.50 NT N-34 05/26/09 43.75 1.44 NT N-35 05/27/09 30+ 1.46 NT N-35 05/29/09 PROD PROD NT N-36 05/29/09 PROD PROD NT N-37 05/29/09 16.25 1.46 NT N-38 05/26/09 62.50 1.66 NT N-39 05/29/09 33.75 1.42 NT N-40 05/29/09 35.00 1.39 NT N-41 05/26/09 37.5+ 1.42 NT N-42 05/26/09 37.5+ 1.40 NT N-45 05/26/09 37.5+ 1.40 NT N-46 05/26/09 37.5+ <th>Well ID</th> <th>Sample Date</th> <th>DISSOLVED CO2 (µg/l)</th> <th>DISSOLVED OXYGEN (µg/l)</th> <th>NITRATE (µg/l)</th> <th>SULFATE (µg/l)</th> <th>METHANE (µg/l)</th> <th>FERROUS IRON (µg/l)</th>	Well ID	Sample Date	DISSOLVED CO2 (µg/l)	DISSOLVED OXYGEN (µg/l)	NITRATE (µg/l)	SULFATE (µg/l)	METHANE (µg/l)	FERROUS IRON (µg/l)
N-31 05/29/09 32.50 1.35 NT N-32 05/29/09 20+ 1.33 NT N-33 05/26/09 26.25 1.50 NT N-34 05/26/09 43.75 1.44 NT N-35 05/29/09 43.75 1.46 NT N-36 05/29/09 PROD PROD NT N-37 05/29/09 16.25 1.57 NT N-38 05/26/09 62.50 1.66 NT N-39 05/26/09 25.00 1.56 NT N-40 05/26/09 33.75 1.42 NT N-41 05/26/09 35.00 1.39 NT N-42 05/26/09 31.25 2.63 NT N-44 05/26/09 31.25 2.45 NT N-45 05/26/09 37.5+ 1.40 NT N-46 05/26/09 37.5+ 1.40 NT N-46 05/26/09 <	RBSL		n/a	n/a	n/a	e/u	6/6	1, 1
N-32 05/29/09 20+ 1.33 NT N-34 05/26/09 26.25 1.50 NT N-34 05/26/09 43.75 1.44 NT N-35 05/26/09 43.75 1.44 NT N-36 05/29/09 PROD PROD NT N-37 05/29/09 16.25 1.57 NT N-38 05/26/09 62.50 1.66 NT N-39 05/26/09 25.00 1.56 NT N-40 05/29/09 20+ 1.42 NT N-41 05/29/09 33.75 1.42 NT N-42 05/26/09 35.00 1.39 NT N-43 05/26/09 37.5+ 1.40 NT N-44 05/26/09 37.5+ 1.40 NT N-45 05/26/09 37.5+ 1.40 NT N-46 05/26/09 37.5+ 1.40 NT N-47 05/26/09 <td< td=""><td>MW-31</td><td>02/53/09</td><td>32.50</td><td>1.35</td><td>LN</td><td>IN.</td><td>E/II</td><td>B/II</td></td<>	MW-31	02/53/09	32.50	1.35	LN	IN.	E/II	B/II
N-34 05/26/09 26.25 1.50 NT N-34 05/26/09 43.75 1.44 NT N-35 05/27/09 30+ 1.46 NT N-36 05/29/09 PROD PROD NT N-38 05/26/09 62.50 1.66 NT N-39 05/26/09 25.00 1.66 NT N-40 05/29/09 33.75 1.42 NT N-41 05/29/09 35.00 1.39 NT N-42 05/29/09 35.00 1.39 NT N-43 05/26/09 31.25 2.45 NT N-44 05/26/09 31.25 2.45 NT N-45 05/26/09 37.5+ 1.40 NT N-46 05/26/09 22.50 2.18 NT N-46 05/27/09 22.50 2.18 NT N-46 05/27/09 22.50 2.18 NT N-46 05/27/09 <	MW-32	05/29/09	20+	1.33	N	N L	IN	
N-34 05/26/09 43.75 1.44 NT N-35 05/27/09 30+ 1.46 NT N-36 05/29/09 16.25 1.57 NT N-37 05/29/09 16.25 1.66 NT N-38 05/26/09 62.50 1.66 NT N-39 05/27/09 25.00 1.56 NT N-40 05/29/09 20+ 1.42 NT N-41 05/29/09 20+ 1.42 NT N-42 05/20/09 35.00 1.39 NT N-43 05/26/09 50+ 2.63 NT N-44 05/26/09 31.25 2.45 NT N-45 05/26/09 37.5+ 1.40 NT N-46 05/27/09 22.50 2.18 NT N-46 05/27/09 22.50 2.18 NT N-46 05/27/09 22.50 2.18 NT N-47 05/26/09 22	MW-33	05/26/09	26.25	1.50	NT	NT	N N	Z
N-35 05/27/09 30+ 1.46 NT N-36 05/29/09 PROD PROD NT N-37 05/29/09 16.25 1.57 NT N-38 05/26/09 62.50 1.66 NT N-39 05/26/09 25.00 1.56 NT N-40 05/29/09 33.75 1.42 NT N-41 05/29/09 20+ 1.42 NT N-42 05/26/09 35.00 1.39 NT N-43 05/26/09 31.25 2.45 NT N-44 05/26/09 37.5+ 1.40 NT N-45 05/26/09 37.5+ 1.40 NT N-46 05/26/09 22.50 2.18 NT N-46 05/26/09 22.50 2.18 NT N-46 05/27/09 22.50 2.18 NT N-46 05/27/09 22.50 2.18 NT N-46 NT = Not Tested	MW-34	05/26/09	43.75	1.44	N	NT	IN	Ĭ
N-36 05/29/09 PROD PROD NT N-37 05/29/09 16.25 1.57 NT N-38 05/26/09 62.50 1.66 NT N-40 05/29/09 25.00 1.42 NT N-41 05/29/09 20+ 1.42 NT N-42 05/27/09 35.00 1.39 NT N-43 05/26/09 31.25 2.45 NT N-44 05/26/09 37.5+ 1.40 NT N-45 05/26/09 37.5+ 1.40 NT N-46 05/27/09 22.50 2.18 NT N-46 05/27/09 22.50 2.18 NT S/mg/l = milligrams per liter 3) NT = Not Tested 3) NT = Not Tested	MW-35	05/27/09	30+	1.46	NT	TN	NT	N
N-37 05/29/09 16.25 1.57 NT N-38 05/26/09 62.50 1.66 NT N-39 05/29/09 25.00 1.56 NT N-40 05/29/09 33.75 1.42 NT N-41 05/29/09 20+ 1.39 NT N-42 05/26/09 35.00 1.39 NT N-43 05/26/09 31.25 2.63 NT N-44 05/26/09 37.5+ 1.40 NT N-45 05/26/09 37.5+ 1.40 NT N-45 05/26/09 22.50 2.18 NT N-46 05/27/09 22.50 2.18 NT N-47 N-48 N-48 NT NT N-48 05/27/09 22.	MW-36	05/29/09	PROD	PROD	TN	N	NŢ	PROD
N-38 05/26/09 62.50 1.66 NT N-39 05/27/09 25.00 1.56 NT N-40 05/29/09 33.75 1.42 NT N-41 05/29/09 20+ 1.42 NT N-42 05/26/09 35.00 1.39 NT N-43 05/26/09 50+ 2.63 NT N-44 05/26/09 31.25 2.45 NT N-45 05/26/09 37.5+ 1.40 NT N-46 05/26/09 22.50 2.18 NT N-46 05/27/09 22.50 2.18 NT N-47 05/27/09 <t< td=""><td>MW-37</td><td>05/29/09</td><td>16.25</td><td>1.57</td><td>NT</td><td>NT</td><td>NT</td><td>TN</td></t<>	MW-37	05/29/09	16.25	1.57	NT	NT	NT	TN
V-39 05/27/09 25.00 1.56 NT V-40 05/29/09 33.75 1.42 NT V-41 05/29/09 20+ 1.42 NT V-42 05/27/09 35.00 1.39 NT V-43 05/26/09 50+ 2.63 NT V-44 05/26/09 31.25 2.45 NT V-45 05/26/09 37.5+ 1.40 NT V-46 05/26/09 22.50 2.18 NT V-46 05/27/09 22.50 2.18 NT 1) µg/l = milligrams per liter 2)mg/l = milligrams per liter 3) NT = Not Tested ************************************	MW-38	02/56/09	62.50	1.66	NT	N	NT	N
V-40 05/29/09 33.75 1.42 NT V-41 05/29/09 20+ 1.42 NT V-42 05/27/09 35.00 1.39 NT V-43 05/26/09 50+ 2.63 NT V-44 05/26/09 31.25 2.45 NT V-45 05/26/09 37.5+ 1.40 NT V-46 05/27/09 22.50 2.18 NT V-46 05/27/09 22.50 2.18 NT 1) µg/l = milligrams per liter 2)mg/l = milligrams per liter 3) NT = Not Tested ************************************	MW-39	05/27/09	25.00	1.56	NT	TN	NT	IN
V-41 05/29/09 20+ 1.42 NT V-42 05/27/09 35.00 1.39 NT V-43 05/26/09 50+ 2.63 NT V-44 05/26/09 37.5+ 1.40 NT V-45 05/27/09 22.50 2.18 NT 1) µg/l = micrograms per liter 2) mg/l = milligrams per liter 2) mg/l = milligrams per liter 3) NT = Not Tested 4) NL= Not Located	MW-40	05/29/09	33.75	1.42	N	TN	IN	N
V-42 05/27/09 35.00 1.39 NT V-43 05/26/09 50+ 2.63 NT V-45 05/26/09 31.25 2.45 NT V-45 05/26/09 37.5+ 1.40 NT V-46 05/27/09 22.50 2.18 NT 1) µg/l = micrograms per liter 2) mg/l = milligrams per liter 3) NT = Not Tested 4) NL= Not Located 4) NL= Not Located	MW-41	05/29/09	- 20+	1.42	TN	N	IN	TN
V-43 05/26/09 50+ 2.63 NT V-44 05/26/09 31.25 2.45 NT V-45 05/26/09 37.5+ 1.40 NT V-46 05/27/09 22.50 2.18 NT 1) µg/l = micrograms per liter 2) mg/l = milligrams per liter 2) mg/l = milligrams per liter 3) NT = Not Tested 4) NL= Not Located	MW-42	05/27/09	35.00	1.39	IN	Ā	TN	L
V-45 05/26/09 31.25 2.45 NT V-45 05/26/09 37.5+ 1.40 NT V-46 05/27/09 22.50 2.18 NT 1) µg/l = micrograms per liter 2) mg/l = milligrams per liter 3) NT = Not Tested 4) NL= Not Located A) NL= Not Located	MW-43	05/26/09	50+	2.63	TN	LΝ	N	N
V-45 05/26/09 37.5+ 1.40 NT V-46 05/27/09 22.50 2.18 NT 1) µg/l = micrograms per liter 2) mg/l = milligrams per liter 3) NT = Not Tested 4) NL= Not Located	MW-44	05/26/09	31.25	2.45	IN	LN	Ā	N
1) µg/l = micrograms per liter 2) mg/l = milligrams per liter 2) mg/l = milligrams per liter 3) NT = Not Tested 4) NL= Not Located 4) NL= Not Located	MW-45	02/26/09	37.5+	1.40	TN	IN	Ŋ	N
1) µg/l = micrograms per liter 2)mg/l = milligrams per liter 3) NT = Not Tested 4) NL= Not Located	MW-46	05/27/09	22.50	2.18	NT	N	TN	N
s per liter **MCMERITIA & ENVIRONMENTAL **CONSTITUTATION **CONS	Notes:	1) µg/l = micro	grams per liter			5) MTBE = Methyl-1	Fertiary-Buty Ether	
EMCINEERING E ENVIRONAL VIAL CONSTELANTS, INC		2)mg/l = millign	rams per liter		22	6) Bolded concentra	ations exceed RBSL	s,
		3) N1 = Not leg	sted ated	EWCNAEN CONTRACTOR		7) BDL = Below Prac	ctical Detection Lim	
		יו וודי ווסר בסכ	מובח					Page 3 of 4

Mile Dissolute				TABLE 6A				
In Sample Date CO2 OXYGEN (Lug/I)	Former SCDO	OT Columbia Ma	aintenance Facility				SCDI	HEC Site ID # 07359
DISSOLVED DISSOLVED ONTRATE SULFATE NETHANE FERR (Lug/I) (Lu	3/36 Marstel	ller Drive, Colur	mbia, South Carolir	ы			GS2	Project # 09-3114-1
I D Sample Date CO2 OXYGEN (µg/I)		SUMI	MARY OF GROUND	WATER ANALYTICA	AL RESULTS (NATU	RAL ATTENUATION	PARAMETERS)	
1,	Well ID	Sample Date	DISSOLVED CO2 (µg/l)	DISSOLVED OXYGEN (µg/l)	NITRATE (µg/1)	SULFATE (µg/l)	METHANE (µg/l)	FERROUS IRON (µg/l)
V-47 05/27/09 33.75 1.38 NT NT NT V-48 05/27/09 16.25 2.27 NT NT NT NT V-49 05/27/09 3.0+ 1.21 NT NT NT NT V-4 06/05/09 6.25 3.69 NT NT NT NT V-5 06/08/09 8.75 3.72 NT NT NT NT V-5 06/05/09 8.75 1.78 NT NT NT NT V-6 06/05/09 8.75 1.78 NT NT NT NT V-7 05/28/09 NT NT NT NT NT NT V-1 05/28/09 NT NT NT NT NT NT V-1 05/28/09 NT NT NT NT NT NT V-2 05/05/09 NT NT NT NT NT NT<	RBSL		n/a	n/a	n/a	n/a	e/u	n/a
V-48 05/27/09 16.25 2.27 NT NT NT V-49 05/27/09 30+ 1.21 NT NT NT N-1 06/05/09 6.25 4.16 NT NT NT N-2 06/08/09 6.25 4.16 NT NT NT N-3 06/08/09 30+ 5.31 NT NT NT N-4 06/05/09 8.75 3.72 NT NT NT N-5 06/05/09 8.75 1.78 NT NT NT N-6 06/05/09 8.75 1.78 NT NT NT N-7 NT NT NT NT NT NT N-1 05/28/09 NT NT NT NT NT N-1 05/28/09 NT NT NT NT NT N-1 05/28/09 NT NT NT NT NT N-1<	MW-47	05/27/09	33.75	1.38	IN	IN	IN	Ľ
V-49 05/27/09 30+ 1.21 NT NT NT N-1 06/05/09 6.25 3.69 NT NT NT NT N-2 06/08/09 6.25 4.16 NT NT NT NT N-3 06/08/09 3.0+ 5.31 NT NT NT NT N-4 06/05/09 8.75 3.72 NT NT NT NT N-5 06/05/09 8.75 1.78 NT NT NT NT N-6 06/05/09 8.75 1.78 NT NT NT NT N-7 05/28/09 NT NT NT NT NT NT N-1 05/28/09 NT NT NT NT NT NT N-1 05/28/09 NT NT NT NT NT NT N-1 Mg/l=miligrams per liter S) mg/l=miligrams per liter 6) Bolded concentrations exceed RBSL's	MW-48	05/27/09	16.25	2.27	NT	N	N	F
N-1 06/05/09 6.25 3.69 NT NT NT NT NT NT NT NT NT NT NT NT NT	MW-49	05/27/09	30+	1.21	N	IN	IN	N
V-2 06/08/09 6.25 4.16 NT NT NT NT V-3 06/08/09 30+ 5.31 NT	DW-1	06/02/09	6.25	3.69	IN	N	LN	IN
N-3 06/08/09 30+ 5.31 NT NT NT NT NT NT NT NT NT NT NT NT NT	DW-2	60/80/90	6.25	4.16	NT	N	N	N
N-4 06/05/09 8.75 3.72 NT NT NT NT NT NT NT NT NT NT NT NT NT	DW-3	60/80/90	30+	5.31	TN	NT	IN	IN
N-5 06/05/09 50+ 4.69 NT NT NT NT NT NT NT NT NT NT NT NT NT	DW-4	60/50/90	8.75	3.72	LN	LN	IN	N
N-6 06/05/09 8.75 1.78 NT NT NT NT NT NT NT NT NT NT NT NT NT	DW-5	60/50/90	50+	4.69	IN	LN	ÍΝ	N
1) µg/l = micrograms per liter 2) mg/l = miligrams per liter 2) mg/l = miligrams per liter 3) NT = Not Tested 4) NL= Not Located 5 NT = Not Located 7) BDL = Below Practical Detection Limits	9-MQ	06/02/09	8.75	1.78	IN	NT	Ę	TN
1) µg/l = micrograms per liter 2) mg/l = miligrams per liter 2) mg/l = miligrams per liter 3) NT = Not Tested 4) NL= Not Located 4) NL= Not Located	SW-1	02/28/09	NT	IN	LN	NT	NT	NT
1) µg/l = micrograms per liter 2) mg/l = milligrams per liter 2) mg/l = milligrams per liter 3) NT = Not Tested 4) NL= Not Located 4) NL= Not Located								
1) µg/l = micrograms per liter 2) mg/l = milligrams per liter 2) mg/l = milligrams per liter 3) NT = Not Tested 4) NL= Not Located 4) NL= Not Located								
1) µg/l = micrograms per liter 2) mg/l = milligrams per liter 3) NT = Not Tested 4) NL= Not Located 4) NL= Not Located								
1) µg/l = micrograms per liter 2) mg/l = milligrams per liter 2) mg/l = milligrams per liter 3) NT = Not Tested 4) NL= Not Located 4) NL= Not Located								
1) µg/l = micrograms per liter 2) mg/l = milligrams per liter 2) mg/l = milligrams per liter 3) NT = Not Tested 4) NL= Not Located 4) NL= Not Located								
CONSIBITANTS, ENC.	votes:	1) µg/l = micro 2)mg/l = millig 3) NT = Not Ter	ograms per liter rams per liter sted	Busha	SANCE ENVIRONMENTAL	5) MTBE = Methyl- 6) Bolded concentr 7) BDL = Below Pra	Tertiary-Butyl Ether ations exceed RBSI ctical Detection Lin	r. -'s nits
		4) NL= Not Loc	ated		constitunts, inc.			Page 4 of 4

	SCDHEC Site ID # 07359 GS2 Project # 09-3114-1		tert-Butyl formate (μg/l)	n/a	2/17	7100 V-100	ABD	<10000	<10000	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100				Page 1 of 4
	SCDHE GS2 Pro		tert-Butyl Alcohol (μg/l)	n/a	V 100	V 100	ABD	<10000	<10000	<100	<100 <100	<100	190	<100	<100	<100	<100	<100	<100	<100	utyl Ether	eed RBSL's	ction Limits	
		NATES)	tert-Amyl methyl ether (μg/l)	n/a	<10	√10 √10	ABD	<1000	<1000	<10	<10	<10	31	<10	<10	<10	<10	<10	<10	<10	5) MTBE = Methyl-Tertiary-Butyl Ether	6) Bolded concentrations exceed RBSL's	 BDL = Below Practical Detection Limits 	
		OF GROUNDWATER ANALYTICAL RESULTS (OXYGENATES)	tert-Amyl Alcohol (µg/l)	n/a	<100	<100	ABD	<10000	<10000	<100	420	1,200	1,800	<100	<100	<100	<100	<100	<100	<100	5) MTBE = Me	6) Bolded cond	7) BDL = Below	
TA DI F CD	9	NALYTICAL RE	Isopropyl Ether (µg/I)	n/a	<10	<10	ABD	<1000	<1000	<10	<10	20	120	<10	<10	<10	<10	<10	<10	<10			MGNEERING & ENVERONMENTAL	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		UNDWATER A	Ethyl tert-butyl ether (µg/l)	n/a	<100	<100	ABD	<10000	<10000	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100			& DVISH BANDAS	
	cility arolina	SUMMARY OF GRO	Ethanol (µg/l)	n/a	<100	<100	ABD	<10000	<10000	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100				
	aintenance Fa mbia, South C	SUM	3,3-Dimethyl-1- butanol (µg/l)	n/a	<100	<100	ABD	<10000	<10000	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	grams per liter	ams per liter	reu ated	300
	Former SCDOT Columbia Maintenance Facility 3736 Marsteller Drive, Columbia, South Carolina		Sample Date		05/27/09	05/27/09	ABD	05/29/09	05/26/09	05/27/09	05/26/09	05/26/09	02/56/09	05/28/09	05/28/09	05/27/09	02/28/09	05/28/09	02/28/09	05/28/09	1) µg/i = micrograms per liter	2)mg/l = milligrams per liter 3) NT = Not Tottod	3) NI = Not Incated	
	Former SCDC 3736 Marste		WellID	RBSL	MW-1	MW-1R	MW-2	MW-2R	MW-3	MW-4	MW-5	9-MW	MW-7	8-MM	6-MM	MW-10	IVIW-II	MW-12	IVIW-13	MW-14	Notes:			

				TAB	TABLE 6B				
Former SCDC 3736 Marstel	Former SCDOT Columbia Maintenance Facility 3736 Marsteller Drive, Columbia, South Carolina	aintenance Fac mbia, South Ca	ility rolina					SCDHEC 9	SCDHEC Site ID # 07359 GS2 Project # 09-3114-1
		SUMMARY		JNDWATER AN	MALYTICAL RES	OF GROUNDWATER ANALYTICAL RESULTS (OXYGENATES)	(ATES)		
Well ID	Sample Date	3,3-Dimethyl-1- butanol (µg/l)	Ethanol (µg/l)	Ethyl tert-butyl ether (µg/l)	Isopropyl Ether (μg/l)	tert-Amyl Alcohol (µg/l)	tert-Amyl methyl ether (µg/l)	tert-Butyl Alcohol (μg/l)	tert-Butyl formate (μg/l)
RBSL		n/a	n/a	n/a	n/a	n/a	e/u	n/a	n/a
MW-15	05/28/09	<100	<100	<100	<10	<100	<10	<100	<100
MW-16	05/28/09	<100	<100	<100	<10	<100	<10	<100	<100
MW-17	05/28/09	<100	<100	<100	<10	<100	<10	<100	<100
MW-18D	ABD	ABD	ABD	ABD	ABD	ABD	ABD	ABD	ABD
MW-19	06/01/09	<50000	<50000	<50000	0005>	<50000	<2000	<50000	<50000
MW-20	05/29/09	<100	<100	<100	<10	<100	<10	<100	<100
MW-21	05/29/09	<10000	<10000	<10000	<1000	<10000	<1000	<10000	<10000
MW-22	05/29/09	<50000	<50000	<50000	0005>	<50000	0005>	<50000	<50000
MW-23	05/29/09	<100	<100	<100	<10	220	<10	<100	<100
MW-24	05/29/09	<50000	<50000	<50000	<5000	<50000	0005>	<50000	<50000
MW-25	02/53/09	<10000	<10000	<10000	<1000	<10000	<1000	<10000	<10000
MW-26	05/27/09	<100	<100	<100	180	4,200	100	<100	<100
MW-27	05/29/09	<5000	<5000	<5000	610	<5000	<500	<5000	<5000
MW-28	05/26/09	<100	<100	<100	<10	<100	<10	<100	<100
MW-29	05/26/09	<100	<100	<100	30	2,700	39	<100	<100
MW-30	02/56/09	<50000	<50000	<50000	<5000	00005>	<5000	<50000	<50000
Notes:	1) μg/l = micro	 µg/l = micrograms per liter 		\		5) MTBE = Met	5) MTBE = Methyl-Tertiary-Butyl Ether	utyl Ether	
	2)mg/l = milligrams per liter	rams per liter		Ç	2	6) Bolded conc	6) Bolded concentrations exceed RBSL's	eed RBSL's	
	3) NI = Not lested 4) NL= Not Located	stea ated		THSINEESING &	HSINEERING & ENVRONMERIAL CONSULFANTS, INC	/) BUL = Below	/) BUL = Below Practical Detection Limits	ection Limits	Dags 2 of A
									rage 2 01 4

				TAB	TABLE 6B				
Former SCDC 3736 Marstel	Former SCDOT Columbia Maintenance Facility 3736 Marsteller Drive, Columbia, South Carolina	aintenance Fac mbia, South Ca	cility arolina			,		SCDHEC:	SCDHEC Site ID # 07359 GS2 Project # 09.2114.1
		SUMIN	SUMMARY OF GROU	JNDWATER AN	VALYTICAL RE	F GROUNDWATER ANALYTICAL RESULTS (OXYGENATES)	NATES)	101	1411C-CO # 121
Well ID	Sample Date	3,3-Dimethyl-1- butanol (μg/l)	Ethanol (µg/l)	Ethyl tert-butyl ether (µg/l)	lsopropyl Ether (µg/l)	tert-Amyl Alcohol (µg/l)	tert-Amyl methyl ether (µg/l)	tert-Butyl Alcohol (μg/l)	tert-Butyl formate (μg/l)
RBSL		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
MW-30	02/26/09	<50000	<50000	<50000	<5000	<50000	<5000	<50000	<50000
MW-31	05/29/09	<100	<100	<100	74	810	13	<100	<100
MW-32	05/29/09	<50000	<50000	<50000	0005>	<50000	<5000	<50000	<50000
MW-33	05/26/09	<100	<100	<100	100	1,400	28	<100	<100
MW-34	02/26/09	<100	<100	<100	88	1,300	24	100	<100
MW-35	05/27/09	<10000	<10000	<10000	<1000	<10000	<1000	<10000	<10000
MW-36	05/29/09	<50000	<50000	<50000	0005>	<50000	<5000	<50000	<50000
MW-37	05/29/09	<50000	<50000	<50000	<5000	<50000	<5000	<50000	<50000
MW-38	05/26/09	<100	<100	<100	360	5,000	95	390	<100
MW-39	05/27/09	<100	<100	<100	<10	280	<10	<100	<100
MW-40	05/29/09	<10000	<10000	<10000	<1000	<10000	<1000	<10000	<10000
MW-41	02/53/09	<100	<100	<100	40	970	<10	120	<100
MW-42	05/27/09	<100	<100	<100	<10	<100	<10	<100	<100
MW-43	05/26/09	<100	<100	<100	370	2,000	130	<100	<100
MW-44	05/26/09	<100	<100	<100	<10	<100	<10	<100	<100
MW-45	05/26/09	<100	<100	<100	<10	120	<10	<100	<100
Notes:	1) $\mu g/l = micro$	 μg/l = micrograms per liter 		V		5) MTBE = Me	5) MTBE = Methyl-Tertiary-Butyl Ether	utyl Ether	
	2)mg/l = milligrams per liter 3) NT = Not Tested	rams per liter sted		j	3	6) Bolded cond 7) BDI = Below	6) Bolded concentrations exceed RBSL's7) BDL = Below Practical Detection Limits	eed RBSL's	
	4) NL= Not Located	ated		ENGINEERING &	NGIREERING & ENVROWMENTAL CONSULTANTS, INC.				0200
									rage 5 UL 4

				TAB	TABLE 6B				
Former SCDO 3736 Marstell	Former SCDOT Columbia Maintenance Facility 3736 Marsteller Drive, Columbia, South Carolina	aintenance Fac mbia, South Ca	ility rolina					SCDHEC S	SCDHEC Site ID # 07359 GS2 Project # 09-3114-1
		SUMIN	SUMMARY OF GROU	JNDWATER AN	VALYTICAL RES	F GROUNDWATER ANALYTICAL RESULTS (OXYGENATES)	VATES)		
Well ID	Sample Date	3,3-Dimethyl-1- butanol (μg/l)	Ethanol (µg/l)	Ethyl tert-butyl ether (μg/l)	Isopropyl Ether (μg/l)	tert-Amyl Alcohol (μg/l)	tert-Amyl methyl ether (µg/l)	tert-Butyl Alcohol (µg/l)	tert-Butyl formate (µg/l)
RBSL		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
MW-46	05/27/09	<100	<100	<100	200	3200	48	200	<100
MW-47	05/27/09	<100	<100	<100	<10	<100	<10	<100	<100
MW-48	05/27/09	<100	<100	<100	<10	430	<10	<100	<100
MW-49	05/27/09	<100	<100	<100	<10	<100	<10	<100	<100
DW-1	60/80/90	<100	<100	<100	<10	<100	<10	<100	<100
DW-2	60/80/90	<100	<100	<100	<10	<100	<10	<100	<100
DW-3	60/80/90	<100	<100	<100	<10	<100	<10	<100	<100
DW-4	60/50/90	<100	<100	<100	<10	<100	<10	<100	<100
DW-5	60/50/90	<100	<100	<100	<10	<100	<10	<100	<100
9-MQ	06/04/09	<100	<100	<100	<10	<100	<10	<100	<100
SW-1	05/28/09	<100	<100	<100	<10	<100	<10	<100	<100
							,		
Notes:	1) µg/l = micro	1) µg/l = micrograms per liter		Y		5) MTBE = Me	5) MTBE = Methyl-Tertiary-Butyl Ether	utyl Ether	
	3) NT = Not Tested	sted			FINADONASHIA	b) Bolded cond 7) BDL = Below	b) boided concentrations exceed RBSL's7) BDL = Below Practical Detection Limits	eed RBSL's ection Limits	
	4) NL= Not Located	ated		ONSKO)	CONSULTANTS, INC.				Page 4 of 4

		TAB	LE 7		
	Columbia Mainten	_			SITE ID# 07359
3736 Marstelle	r Drive, Columbia,				oject# 09-3114-1
		UNDWATER POTEN			•
	Well Depth	Screen Interval	Top of casing	Depth to Water	Groundwater
Well	(Feet)	(Feet)	Elevation(ft)	(btoc)	Elevation(ft)
MW-1	18	8 to 18	249.11	15.63	233.48
MW-1R	25	15 to 25	249.08	15.71	233.37
MW-2	ABD	ABD	ABD	ABD	ABD
MW-2R	20	10 to 20	246.80	14.51	232.29
MW-3	24	14 to 24	249.80	16.86	232.94
<u>MW-4</u>	24	14 to 24	249.26	14.44	234.82
MW-5	24	14 to 24	251.69	18.01	233.68
MW-6	25	15 to 25	242.43	13.70	228.73
MW-7	25	15 to 25	244.04	14.03	230.01
MW-8	20	10 to 20	230.68	3.89	226.79
MW-9	25	15 to 25	226.02	2.54	223.48
MW-10	25	15 to 25	243.68	12.58	231.1
MW-11	25	15 to 25	256.77	18.92	237.85
MW-12	25	15 to 25	240.48	8.50	231.98
MW-13	20	10 to 20	229.74	2.94	226.8
MW-14	25	15 to 25	231.55	5.66	225.89
MW-15	25	15 to 25	225.95	15.85	210.1
MW-16	25	15 to 25	210.46	3.53	206.93
MW-17	25	15 to 25	222.95	6.96	215.99
MW-18	ABD	ABD	ABD	ABD	ABD
ИW-19	23	13 to 23	246.86	0.01' FP	FP
MW-20	25	10 to 25	246.43	13.85	232.58
/IW-21	25	10 to 25	246.88	14.75	232.13
ЛW-22	25	10 to 25	247.17	15.11	232.06
ЛW-23	25	10 to 25	247.14	14.65	232.49
ЛW-24_	25	10 to 25	246.90	1.42' FP	FP
лW-25	25	10 to 25	246.94	14.12	232.82

Comments:

Water Levels Measured on 5/25/09 through 6/8/09

Page 1 of 3

TABLE 7

Former SCDOT Columbia Maintenance Facility 3736 Marsteller Drive, Columbia, SC

SITE ID# 07359

GS2 Project# 09-3114-1

GROUNDWATER FIELD SCREENING SUMMARY

	Well Depth	Screen Interval	Top of casing	Depth to Water	Groundwater
Well	(Feet)	(Feet)	Elevation(ft)	(btoc)	Elevation(ft)
MW-26	25	10 to 25	248.00	0.51' FP	FP
MW-27	25	10 to 25	247.91	15.65	232.26
MW-28	23.9	8.9 to 23.9	250.17	17.36	232.81
MW-29	24.9	9.9 to 24.9	250.87	17.85	233.02
MW-30	24.22	9.22 to 24.22	249.29	0.02' FP	FP
MW-31	24.85	9.85 to 24.85	248.1	16.15	231.95
MW-32	24.56	9.56 to 24.56	247.48	15.1 5	232.33
MW-33	24.74	9.74 to 24.74	246.58	14.91	231.67
MW-34	24.72	9.72 to 24.72	246.00	14.72	231.28
MW-35	24.78	9.78 to 24.78	249.39	16.5	232.89
MW-36	24.21	9.21 to 24.21	247.26	2.25' FP	F P
MW-37	24.48	9.48 to 24.48	247.26	17.57	229.69
MW-38	24.81	9.81 to 24.81	243.17	13.89	229.28
MW-39	24.51	9.51 to 24.51	249.10	16.12	232.98
MW-40	24.63	9.63 to 24.63	247.67	14.84	232.83
MW-41	24.31	9.31 to 24.31	246.97	14.83	232.14
MW-42	24.66	9.66 to 24.66	246.72	16.36	230.36
MW-43	25.09	10.09 to 25.09	240.06	13.49	226.57
MW-44	25.4	10.4 to 25.4	240.77	14.35	226.42
MW-45	24.43	9.43 to 24.43	246.55	17.09	229.46
MW-46	24.55	9.55 to 24.55	246.88	14.34	232.54
MW-47	24.64	9.64 to 24.64	246.29	14.51	231.78
MW-48	24.83	9.83 to 24.83	245.36	14.36	231
MW-49	24.41	9.41 to 24.41	245.57	13.29	232.28
DW-1	61.02	56.02 to 61.02	248.53	16.86	231.67
DW-2	61.15	56.15 to 61.15	250.16	17.79	232.37
DW-3	56.05	51.05 to 56.05	249.86	37.08	212.78
Comments: Water Levels Mea through 6/8/09	sured on 5/25/09	G	2	· · · ·	
		ENGINEERING & L CONSTITA	NTS, INC		Page 2 of 3

Page: 50

TABLE 7

Former SCDOT Columbia Maintenance Facility
3736 Marsteller Drive, Columbia, SC

SITE ID# 07359

3736 Marsteller Drive, Columbia, SC GS2 Project# 09-3114-1 GROUNDWATER FIELD SCREENING SUMMARY Well Depth Screen Interval Top of casing Depth to Water Groundwater Well (Feet) (Feet) **Elevation** (btoc) Elevation(ft) DW-4 63.8 58.8 to 63.8 247.05 16.1 230.95 DW-5 61.02 56.02 to 61.02 243.27 16.67 226.6 DW-6 63.11 58.11 to 63.11 246.26 16.85 229.41

Comments:

Water Levels Measured on 5/25/09 through 6/8/09

Page 3 of 3

						TABLE 8	mi œ						
Former SC 3736 Mars	Former SCDOT Columbia Maintenance Facility 3736 Marsteller Drive, Columbia, South Carolina	ia Mainten: Columbia, S	ance Facili South Caro	ty lina							SC	SCDHEC Site ID # 07359 GS2 Project # 09-3114-1	D# 07359 09-3114-1
			SUMMARY	SUMMARY OF HISTORIC	RICAL GRO	UNDWATE	ER ANALYT	AL GROUNDWATER ANALYTICAL RESULTS (PRIMARY CoC)	TS (PRIMA	RY CoC)			
Well ID	Sample Date	Water Level (Ft.)	Product Thickness (Ft.)	Benzene (µg/l)	Toluene (μg/l)	Ethylbenzene (µg/l)	Total Xylenes (µg/l)	Total BTEX (μg/l)	Napthalene (µg/l)	MTBE (μg/l)	EDB (µg/l)	1, 2 DCA (mg/l)	Total Lead (μg/l)
RBSL		n/a	n/a	2	1,000	200	10,000	n/a	25	40	0.05	n/a	15
MW-1	03/30/00	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY
MW-1	09/25/03	;	1	34	10	<5.0	3.8	47.8	4.5	<5.0	<0.020	ΙΝ	11.0
MW-1	05/27/09	15.03	;	<5.0	<5.0	<5.0	<5.0	BDL	<5.0	<5.0	<0.021	<5.0	4.7
MW-1R	08/20/02	18.15	ı	1.26	BDL	BDL	1.82	3.08	BDL	BDL	BDL	Ĭ	BDL
MW-1R	04/20/04	1	!	5.20	<5.0	<5.0	<5.0	5.20	14	<5.0	NT	M	M
MW-1R	01/25/05	1	;	3.20	<5.0	<5.0	<5.0	3.20	18	<5.0	<0.020	<5.0	N
MW-1R	07/27/05	:	1	6.10	<5.0	<5.0	<5.0	6.10	6.3	<5.0	NT	IN	¥
MW-1R	10/19/05	;	1	3.60	<5.0	<5.0	<5.0	3.60	16.0	<5.0	<0.020	IN	N
MW-1R	07/10/06	!	;	1.90	<5.0	<5.0	<5.0	1.90	13.0	<5.0	<0.020	<5.0	N
MW-1R	05/27/09	15.71	!	<5.0	<5.0	<5.0	<5.0	BDI	<5.0	<5.0	<0.021	<5.0	2.0
MW-2	03/30/00	16.65	96'0	IN	NT	NT	IN	ΙN	N	N	ĬN	ΙN	ΙZ
MW-2	08/20/02	16.94	1.12	30,100	41,300	3,190	17,670	92,260	1,150	408	380	N	١
MW-2	01/25/05	!	1	3,100	10,000	780	4,300	18,180	380	<50	61	<50	Ŋ
MW-2	07/27/05	1	ŀ	2,100	6,700	510	2,800	12,110	<500	<500	IN	INT	F
MW-2R	12/17/08	14.20	:	NT	NT	NT	LN	IN	NT	N	IN	Z	I E
MW-2R	05/29/09	14.51	}	1,400	8,100	1,700	8,700	19,900	570	<500	8	<500	Page 095
Notes:	 µg/l = micrograms per liter 	crograms pe	er liter				1	5) MTBE =	5) MTBE = Methyl-Tertiary-Butyl Ether	tiary-Buty	Ether]
	2)mg/l = milligrams per liter	lligrams per	liter		7	いじ		6) Bolded c	6) Bolded concentrations exceed RBSL's	ons exceed	I RBSL's		
	3) NT = Not Tested	Tested)			7) BDL = 8¢	7) BDL = Below Practical Detection Limits	cal Detection	on Limits		
	4) NL= Not Located	ocated.			SUNS.	REVENIGA ENVIRORMENTAL Consultants, enc 						Pa	Page 1 of 13
													J

Former SC 3736 Mars	Former SCDOT Columbia Maintenance Facility 3736 Marsteller Drive. Columbia. South Carolina	ia Mainten Columbia.	ance Facili	ty Ilino		TABLE 8	∞	•			SC	SCDHEC Site ID # 07359	ID # 07359
			SUMMAR	SUMMARY OF HISTORIC	RICAL GRO	UNDWATE	ER ANALYT	AL GROUNDWATER ANALYTICAL RESULTS (PRIMARY CoC)	LTS (PRIMA	(RY CoC)	3	GSZ Project # 09-3114-1	09-3114-1
Well ID	Sample Date	Water Level (Ft.)	Product Thickness (Ft.)	Benzene (μg/l)	Toluene (μg/l)	Ethylbenzene (μg/l)	Total Xylenes (μg/l)	Total BTEX (μg/l)	Napthalene (μg/l)	MTBE (μg/!)	EDB (μg/l)	1, 2 DCA (mg/l)	Total Lead (μg/l)
RBSL		n/a	n/a	5	1,000	700	10,000	n/a	25	40	0.05	n/a	1
MW-3	08/21/00	18.90		7,475	9,794	1,024	1,773	20,066	<1	540	Z	IN	52.0
MW-3	08/20/02	19.05	1	5,590	12,500	1,470	7,570	27,130	715	416	70.0	Į	27.0
MW-3	09/25/03	-		3,900	16,000	1,900	11,000	32,800	089	<5.0	19.0	Z	11.0
MW-3	04/20/04	;	;	2,600	24,000	2,200	11,600	45,400	069	<250	¥	¥	Þ
MW-3	01/25/05	;	,	2,000	25,000	1,300	13,900	47,200	1700	<1000	90.06	<1000	Þ
MW-3	07/27/05	-	;	1,400	5,400	780	5,900	13,480	570	<250	N	IN	¥
MW-3	10/19/05	:	1	2,600	16,000	1,200	8,500	31,300	750	<250	170.0	NT	Ę
MW-3	07/10/06		;	2,300	10,000	950	6,500	19,750	770	<500	25.0	<500	ΙN
MW-3	05/26/09	16.86	;	3,200	14,000	1,800	10,900	29,900	200	<500	15.7	<500	76.0
MW-4	08/21/00	17.29	;	3.21	2.98	<1	1.5	10.69	23.5	<1	NT	NT	28.0
MW-4	08/20/02	17.51	1	BDL	BDL	BDL	BDL	108	BDL	BDL	BDL	ŢN	BDL
MW-4	09/25/03	-	!	<5.0	<5.0	<5.0	<5.0	BDL	38.0	<5.0	<0.020	N	2.20
MW-4	04/20/04	;	;	<5.0	<5.0	<5.0	<5.0	BDL	<5.0	<5.0	N	N	ΙΝ
MW-4	01/24/05	'	;	<5.0	<5.0	<5.0	<5.0	108	<5.0	<5.0	<0.020	Ā	ΙN
MW-4	01/21/05	:	1	<5.0	<5.0	<5.0	<5.0	BDL	<5.0	<5.0	IN	ΙN	NT
MW-4	10/19/05	;	:	<5.0	<5.0	<5.0	<5.0	BDF	<5.0	<5.0	<0.020	N	Ν
Notes:	1) µg/l = micrograms per liter	rograms pe	er liter				1	5) MTBE =	= Methyl-Tertiary-Butyl Ether	tiary-Buty	Ether		
	2)mg/l = milligrams per liter 3) NT = Not Tested	ligrams per Tested	liter	,,		CS5		6) Bolded (5	6) Bolded concentrations exceed RBSL's	ons exceed	RBSL's		
	4) NL= Not Located	ocated			מונילין -	PICINFERING & ENVIRONMENTAL CONSULTANTAL		ין טטר וי טע	/ DDL - DEIOW FIACHICA! DETECTION LIMITS	ימי חבובנון		Ē	200
												Гa	rage 2 of 11

						TABLE 8	ті 80						
Former SCI 3736 Mars	Former SCDOT Columbia Maintenance Facility 3736 Marsteller Drive, Columbia, South Carolina	a Mainten: Columbia, S	ance Facilit South Caro	ty Iina							SCD	SCDHEC Site ID # 07359	HEC Site ID # 07359
			SUMMARY	OF HISTO	RICAL GRO	UNDWATE	ER ANALYT	SUMMARY OF HISTORICAL GROUNDWATER ANALYTICAL RESULTS (PRIMARY CoC)	TS (PRIMA	RY CoC)	3	# 103601.7	T-6TTC-C0
Well ID	Sample Date	Water Level (Ft.)	Product Thickness (Ft.)	Benzene (μg/l)	Toluene (μg/l)	Ethylbenzene (μg/l)	Total Xylenes (μg/l)	Total BTEX (μg/l)	Napthalene (μg/l)	MTBE (μg/l)	EDB (μg/l)	1, 2 DCA (mg/l)	Total Lead (μg/l)
RBSL		n/a	n/a	5	1,000	700	10,000	n/a	25	40	0.05	n/a	15
MW-4	02/10/06	1	;	<5.0	<5.0	<5.0	<5.0	BDL	<5.0	<5.0	<0.020	<5.0	N
MW-4	02/27/00	14.44	-	<5.0	<5.0	<5.0	<5.0	BDL	<5.0	<5.0	<0.020	<5.0	<1.0
MW-5	08/21/00	19.57	-	2.42	3.37	<1	<1	5.79	4	7	ΙN	NT	5.0
MW-5	08/20/02	20.08	;	25.70	17.3	1.41	12.99	57.4	BDL	BDL	BDL	NT	BDL
MW-5	09/25/03	;	;	46.0	11.0	1.70	31.50	90.2	44	<5.0	<0.020	NT	<5.0
MW-5	04/20/04	:	'	30.0	<5.0	<5.0	13.30	43.3	4	<5.0	N	NT	N
MW-5	01/24/05	;	-	25.0	<5.0	<5.0	12.40	37.4	<5.0	<5.0	<0.020	<5.0	N
MW-5	07/27/05	:	1	57.0	4.7	1.70	40.00	103.4	<5.0	0.5>	IN	IN	N
MW-5	10/19/05	-	-	33.0	2.8	<5.0	22.50	58.3	<5.0	<5.0	<0.020	N	N
MW-5	07/10/06	:	1	40.0	<5.0	<5.0	25.20	65.2	<5.0	<5.0	<0.020	<5.0	N
MW-5	05/56/09	18.01	}	16.0	<5.0	<5.0	<5.0	16.0	<5.0	<5.0	<0.021	<5.0	2
MW-6	08/20/02	15.15	1	1,100	1,710	979	3,330	992'9	51.2	1.99	10.0	ŢN	BDL
9-MW	09/25/03	;	1	940	1,100	640	3,200	5,880	200	<5.0	3.2	Ā	9.0
9-MM	04/20/04	:	;	066	1,100	670	2,790	5,550	160	<25	ΙN	N	N
9-MW	01/25/09	;	;	710	830	280	2,060	4,180	380	<50	3.4	<50	¥
MW-6	07/27/05	;	•	470	200	220	1,720	2,960	240	<25	N	Ā	NT
Notes:	 μg/l = micrograms per liter 	rograms pe	er liter				1	5) MTBE =	5) MTBE = Methyl-Tertiary-Butyl Ether	tiary-Buty	Ether		
	2)mg/l = milligrams per liter	ligrams per	. liter	, <u>-</u> -	1	いじ		6) Bolded c	6) Bolded concentrations exceed RBSL's	ons exceec	I RBSL's		
	3) NT = Not Tested	Tested			ノ		_	7) BDL = 8¢	7) BDL = Below Practical Detection Limits	cal Detection	on Limits		
	4) NL= Not Located	ocated			ן אַניון: אַניון:	FRURELLING & ENVRONMENTAL CONSULTANTS, INC.	MENTA!					Pa	Page 3 of 11

TABLE 8 TABL		SCDHEC Site ID # 07359 GS2 Project # 09-3114-1		Total Lead (μg/l) 1, 2 DCA (mg/l) EDB (μg/l) MTBE (μg/l) Napthalene (μg/l) Total BTEX (μg/l)	n/a 25 40 0.05/- 15	2.160 200 /25 1.0 NIT	1.544 250 750 0.10 750	250 <5.0	1.105.8 48.3 97.7 10.0 NE	13 940 <500 250 0 05E NT	8.010 170 360 NT NT	15.530 650 300 0.330	9.940 180 250 NT NT	3.630 78 95 0000 NIT	10 28 <0.020	71 40 <0.021 <5.0 3	0.110 NT 2000	SS SS NT 7500 NT 7500 NT 7500	<5.0 81 NT NT	<0.020 <5.0 NT	-5.0 9.5 NT NT NT NT	utvi Ether		7) BDL = Below Practical Detection Limits
Sample Level Sample Level 11D Sample Level 1-6 10/19/05 (Ft.) 1-6 05/26/09 13.70 1-7 09/25/03 09/25/03 10/10/06 10/10/10/06 10/10/06 10/10/10/06 10/10/10/06 10/10/10/06 10/10/10/06 10/10/10/06 10/10/10/06 10/10/10/06 10/10/10/06 10/10/10/06 10/10/10/10/10/10/10/10/10/10/10/10/10/1	TABLE 8		WATER ANALYTICAL	Total Xylenes (µg/l) Ethylbenzene	10,000	1.030	780	820	131.2	1.600	1.690	3,000	1.780	670	22	284	7.49	<5.0	<5.0	<5.0	<5.0	N (2) N	(CS)	•
Sample Level Sample Level 11D Sample Level 1-6 10/19/05 (Ft.) 1-6 05/26/09 13.70 1-7 09/25/03 09/25/03 10/10/06 10/10/10/06 10/10/06 10/10/10/06 10/10/10/06 10/10/10/06 10/10/10/06 10/10/10/06 10/10/10/06 10/10/10/06 10/10/10/06 10/10/10/06 10/10/10/10/10/10/10/10/10/10/10/10/10/1			TORICAL GROUNI	(μg/I) Toluene (μg/I)	00	50	-	-	┞	5,700	2,000	5,100	2,900	840	6.6	140.0	-							リ
Sample Level Sample Level 11D Sample Level 1-6 10/19/05 (Ft.) 1-6 05/26/09 13.70 1-7 09/25/03 09/25/03 10/10/06 10/10/10/06 10/10/06 10/10/10/06 10/10/10/06 10/10/10/06 10/10/10/06 10/10/10/06 10/10/10/06 10/10/10/06 10/10/10/06 10/10/10/06 10/10/10/10/10/10/10/10/10/10/10/10/10/1		nce Facility outh Carolina	UMMARY OF HIS	Benzene (μg/l) Product Thickness (Ft.)	_	400	_	-			3,800				130	- 1,200		<5.0	30			liter	iter	
er SCDOT Colui Marsteller Driv Sample II ID Date V-6 10/19/0 V-6 07/10/0 V-6 05/26/0 V-7 09/25/0 V-7 09/25/0 V-7 09/25/0 V-7 09/25/0 V-7 07/10/0 V-7 07/20/0 V-7 09/25/0 V-7 07/20/0 V-7 09/25/0 V-8 07/27/0 V-8 0		mbia Maintena /e, Columbia, S		Water Level (Ft.)	n/a		90			51	ļ		5	5	9	_	_	3				nicrograms per	milligrams per l	or lested
		er SCDOT Colui Marsteller Driv		Well ID Sample	RBSL	MW-6 10/19/0	MW-6 07/10/0	\dashv	MW-7 08/20/0	MW-7 09/25/0	MW-7 04/20/0	MW-7 01/25/0	MW-7 07/27/0	MW-7 10/19/0	_	┪	+	+	_	+	ထု	Notes: 1) µg/l = n	2) mg/l = r	in - inife

	<u>ن</u> 9	Т	T	Т	Т	T	<u> </u>	Т	Т	П	Г			1	Г	Т	1	, 	г	: 55	_			· · ·
	ID # 0739 09-3114		Total Lead (μg/l)	15	¥	Þ	5,310.0	BDL	22	N	N	N	Þ	IN	16	BDL	7.6	IN	N	N		ı	•	Page 5 of 1
	SCDHEC Site ID # 07359 GS2 Project # 09-3114-1		1, 2 DCA (mg/l)	n/a	IN	<5.0	<5.0	M	NT	NT	<5.0	IN	IN	<5.0	<5.0	IN	NT	NT	<5.0	NT				Pa
	SC		EDB (µg/l)	0.05	<0.020	<0.020	<0.021	BDL	<5.0	¥	<0.020	NT	<0.020	<0.020	<0.020	BDL	<0.020	NT	<0.020	IN	Ether	RBSL's	on Limits	
		RY CoC)	MTBE (µg/l)	40	28.0	9.7	53.0	BDL	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	BDL	<5.0	<5.0	<5.0	<5.0	= Methyl-Tertiary-Butyl Ether	6) Bolded concentrations exceed RBSL's	7) BDL = Below Practical Detection Limits	
		ANALYTICAL RESULTS (PRIMARY CoC)	Napthalene (μg/l)	25	<5.0	<5.0	<5.0	BDL	4.3	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	BDL	<5.0	3.10	<5.0	<5.0	Methyl-Ter	oncentrati	low Practic	
		CAL RESUL	Total BTEX (µg/l)	n/a	BDL	5) MTBE = 1	6) Bolded c	7) BDL = Be																
E 8		R ANALYTI	Total Xylenes (μg/l)	10,000	<5.0	<5.0	<5.0	BDL	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	BDL	<5.0	<5.0	<5.0	<5.0				Astroi
TABLE 8		AL GROUNDWATER	Ethylbenzene (µg/I)	200	<5.0	<5.0	<5.0	BDL	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	BDL	<5.0	<5.0	<5.0	<5.0	\	S	う	enton estanto a transconor destrato COASCULTANTS, INC.
			Toluene (μg/l)	1,000	<5.0	<5.0	<5.0	BDL	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	BDL	<5.0	<5.0	<5.0	<5.0		7	フ	- CANA
	ly lina	SUMMARY OF HISTORIC	Benzene (µg/I)	5	<5.0	<5.0	<5.0	BDL	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	BDL	<5.0	<5.0	<5.0	<5.0				
	ance Facilit South Caro	SUMMARY	Product Thickness (Ft.)	e/u		:	:	;	1	ł	!	;	:	;	1		1	-	[:	er liter	liter		
	a Mainten Jolumbia, S	- • [Water Level (Ft.)	n/a			3.89	8.24	1	1	;	1	:	:	2.54	14.22	+	:	:	-	rograms pe	ligrams per	Tested	ocated
	OT Columbi		Sample		10/19/05	07/10/06	02/28/09	08/20/05	09/25/03	04/20/04	01/25/05	07/27/05	10/19/05	07/10/06	05/28/09	08/20/02	09/25/03	04/20/04	01/25/05	07/27/05	 µg/l = micrograms per liter 	2)mg/l = milligrams per liter	3) NT = Not Tested	4) NL= Not Located
	Former SCDOT Columbia Maintenance Facility 3736 Marsteller Drive, Columbia, South Carolina		Well ID	RBSL	MW-8	MW-8	MW-8	MM-9	MM-9	MW-9	MW-9	MW-9	MM-9	MM-9	6-WW	MW-10	MW-10	MW-10	MW-10	MW-10	Notes:		-	

						TABLE 8	E 8						
Former SC 3736 Mars	Former SCDOT Columbia Maintenance Facility 3736 Marsteller Drive, Columbia, South Carolina	ia Mainten Columbia, S	ance Facili South Caro	ty lina							SC	SCDHEC Site ID # 07359 GS2 Project # 09-3114-1	ID # 07359
			SUMMAR	SUMMARY OF HISTORIC	RICAL GRC	CAL GROUNDWATER	ER ANALYT	ANALYTICAL RESULTS (PRIMARY CoC)	LTS (PRIMA	NRY CoC)			
Well ID	Sample Date	Water Level (Ft.)	Product Thickness (Ft.)	Benzene (μg/l)	Toluene (μg/l)	Ethylbenzene (μg/l)	Total Xylenes (µg/I)	Total BTEX (μg/l)	Napthalene (μg/l)	MTBE (μg/l)	EDB (µg/l)	1, 2 DCA (mg/l)	Total Lead (μg/l)
RBSL		n/a	n/a	5	1,000	700	10,000	n/a	25	40	0.05	n/a	15
MW-10	10/19/05	1	:	<5.0	<5.0	<5.0	<5.0	BDL	<5.0	<5.0	<0.00	Į	2 5
MW-10	02/10/06	1		<5.0	<5.0	<5.0	<5.0	BDL	<5.0	<5.0	<0.020	- V-	<u> </u>
MW-10	05/27/09	0.19	1	<5.0	<5.0	<5.0	<5.0	BDL	<5.0	<5.0	<0.021	\$5.0 \$5.0	4
MW-11	08/20/02	23.80	-	108	108	BDL	BDL	BDL	BDI	BDI	S.	Ž Į	2
MW-11	09/25/03	;	;	<5.0	<5.0	<5.0	<5.0	BDL	<5.0	<5.0	<0.020	Į	
MW-11	07/27/05	:	1	<5.0	<5.0	<5.0	<5.0	BDL	<5.0	<5.0	Z	į	I: N
MW-11	10/19/05	;	-	<5.0	<5.0	<5.0	<5.0	BDL	<5.0	<5.0	<0.020	Į.	¥
MW-11	07/10/06	}	;	<5.0	<5.0	<5.0	<5.0	BDL	<5.0	<5.0	<0.020	<5.0	¥
MW-11	05/28/09	18.92		<5.0	<5.0	<5.0	<5.0	BDL	<5.0	<5.0	<0.020	\$.0 \$.0	6
MW-12	08/20/02	10.02	:	108	BDL	BDL	BDL	1G8	BDL	BDL	BDL	N	ES I
MW-12	09/23/03	;		<5.0	<5.0	<5.0	<5.0	BDL	<5.0	<5.0	<0.020	Z	18.0
MW-12	04/20/04	;	;	<5.0	<5.0	<5.0	<5.0	BDL	<5.0	<5.0	IN	Z	Þ
MW-12	01/25/05	;	,	<5.0	<5.0	<5.0	<5.0	BDL	<5.0	<5.0	<0.020	<5.0	N
MW-12	07/27/05	-	1	<5.0	<5.0	<5.0	<5.0	BDL	<5.0	<5.0	¥	E	E
MW-12	10/19/05	-	:	<5.0	<5.0	<5.0	<5.0	BDL	<5.0	<5.0	<0.020	k	ž
MW-12	02/10/06	-	;	<5.0	<5.0	<5.0	<5.0	BDL	<5.0	<5.0	<0.020	<5.0	Į.
Notes:	1) µg/l = micrograms per liter	rograms pe	r liter					ш	= Methyl-Tertiary-Butyl Ether	tiary-Buty	Ether		
	2)mg/l = milligrams per liter	ligrams per	liter			S	<u></u>	6) Bolded α	6) Bolded concentrations exceed RBSL's	ons exceed	RBSL's		
	3) NI = NOT lested	l ested			ノ ฐ	VERSING & INVIRONAL		7) BDL = Be	7) BDL = Below Practical Detection Limits	al Detectic	on Limits		
	think- NOU LI	ocaled				CONSULTÁNTS, INC.						Pag	Page 6 of 11

Former SCDOT Columbia Maintenance Facility 3736 Marsteller Drive. Columbia. South Carolina	iia Main Columb	teni	ance Facili	t 7 ina	·	TABLE 8	ж 8) 	SCDHEC Site ID # 07359	D # 07359
SUMMARY OF HISTORIC	SUMMARY OF HIST	SUMMARY OF HIST	OF HIS	12	RICAL GRO	UNDWATE	ER ANALYT	AL GROUNDWATER ANALYTICAL RESULTS (PRIMARY CoC)	TS (PRIMA	RY CoC)	3	652 Project # 09-3114-1	09-3114
Sample (mg/l) Product Thickness (Ft.) (Ft.) (Ft.)	(µg/l) Product Thickness (Ft.)	(µg/l) Product Thickness			Toluene (μg/l)	Ethylbenzene (µg/l)	Total Xylenes (μg/l)	Total BTEX (μg/l)	Napthalene (μg/l)	MTBE (μg/l)	EDB (µg/l)	1, 2 DCA (mg/l)	Total Lead (μg/l)
n/a n/a 5	n/a	Н	S		1,000	700	10,000	n/a	25	40	0.05	n/a	15
05/28/09 8.50 <5.0	-	<5.0	<5.0		<5.0	<5.0	<5.0	108	<5.0	<5.0	<0.020	<5.0	5
08/20/02 3.04 BDL	;	BDL	108		BDL	BDL	BDF	BDL	108	BDL	BDL	N	BDL
09/25/03 <5.0			<5.0		<5.0	<5.0	<5.0	BDL	<5.0	<5.0	<0.020	N	33.0
04/20/04 <5.0	;	<5.0	<5.0		<5.0	<5.0	<5.0	BDL	<5.0	<5.0	IN	F	IN
01/25/05 <5.0	!	<5.0	<5.0		<5.0	<5.0	<5.0	BDL	<5.0	<5.0	<0.020	<5.0	NT
07/27/05 <5.0			<5.0		<5.0	<5.0	<5.0	BDL	<5.0	<5.0	N	N	TN
,	1	<5.0	<5.0		<5.0	<5.0	<5.0	BDL	<5.0	<5.0	<0.020	INT	IN
:	;	_	<5.0	I	<5.0	<5.0	<5.0	BDL	<5.0	14	<0.020	<5.0	NT
2.94	1	- <5.0	<5.0	,	<5.0	<5.0	<5.0	BDL	<5.0	<5.0	<0.020	<5.0	39
7.90	1		BDL	I	BDL	BDL	BDL	BDL	BDL	BDL	108	INT	BDL
1	1		<5.0	_	<5.0	<5.0	<5.0	BDL	<5.0	<5.0	<0.020	NT	8.5
04/20/04 <5.0	:		<5.0	_	<5.0	<5.0	<5.0	BDL	<5.0	<5.0	IN	NT	NT
;	+	+	<5.0	_ 1	<5.0	<5.0	<5.0	BDL	<5.0	<5.0	<0.020	<5.0	TN
-			<5.0	_	<5.0	<5.0	<5.0	BDL	<5.0	<5.0	NT	NT	IN
10/19/05 <5.0			<5.0	J	<5.0	<5.0	<5.0	BDL	<5.0	<5.0	<0.020	NT	Ę
07/10/06 <5.0	<5.0	<5.0	<5.0		<5.0	<5.0	<5.0	BDL	<5.0	<5.0	<0.020	<5.0	ĸ
1) µg/l = micrograms per liter	crograms per liter	er liter				(1	5) MTBE =	5) MTBE = Methyl-Tertiary-Butyl Ether	tiary-Buty	Ether		
2)mg/l = milligrams per liter	lligrams per liter	liter			1	いじ		e) Bolded o	6) Bolded concentrations exceed RBSL's	ons exceed	I RBSL's		78
3) NT = Not Tested 4) NI = Not Located	Tested					ENGINERING & INVIRGINATION	MENIAL	2) BDL = Be	7) BDL = Below Practical Detection Limits	al Detecti	on Limits	I	•
יובר ווסו בסימובת	Located					COGSOCAGNIS, INC	1					Pa	Page 7 of 11

						TABLE 8	E 8							
Former SCI 3736 Marsi	Former SCDOT Columbia Maintenance Facility 3736 Marsteller Drive, Columbia, South Carolina	ia Mainten: Columbia, S	ance Facili South Caro	ty Ilina							SC	SCDHEC Site ID # 07359 GS2 Project # 09-3114-1	ID # 07359 09-3114-1	6 -
			SUMMAR	SUMMARY OF HISTORICAL GROUNDWATER	RICAL GRO	UNDWATE	R ANALYT	ICAL RESUI	ANALYTICAL RESULTS (PRIMARY CoC)	(RY CoC)				
Well ID	Sample Date	Water Level (Ft.)	Product Thickness (Ft.)	Benzene (µg/l)	Toluene (μg/l)	Ethylbenzene (μg/l)	Total Xylenes (μg/l)	Total BTEX (μg/l)	Napthalene (μg/l)	MTBE (μg/l)	EDB (μg/l)	1, 2 DCA (mg/l)	Total Lead (μg/l)	<u> </u>
RBSL		n/a	n/a	2	1,000	200	10,000	n/a	25	40	0.05	n/a	15	_
MW-14	02/58/09	5.66	:	<5.0	<5.0	<5.0	<5.0	BDL	<5.0	<5.0	<0.020	<5.0	24	_
MW-15	08/20/02	18.76	:	BDL	BDL	BDL	BDL	BDL	BDL	BDL	80L	N	BDL	т.
MW-15	09/25/03	!	1	<5.0	<5.0	<5.0	<5.0	BDL	<5.0	<5.0	<0.020	IN	3.1	_
MW-15	04/20/04	;	;	<5.0	<5.0	<5.0	<5.0	108	<5.0	<5.0	IN	NT	NT	_
MW-15	01/25/05	-	1	<5.0	<5.0	<5.0	<5.0	BDL	<5.0	<5.0	<0.020	<5.0	NT	-
MW-15	07/27/05	;	ł	<5.0	<5.0	<5.0	<5.0	BDL	<5.0	<5.0	IN	ΙN	IN	·
MW-15	10/19/05	1	1	<5.0	<5.0	<5.0	<5.0	BDL	<5.0	<5.0	<0.020	TN	ΙN	_
MW-15	07/10/06	1	,	<5.0	<5.0	<5.0	<5.0	BDL	<5.0	<5.0	<0.020	<5.0	NT	_
MW-15	05/28/09	15.85	!	<5.0	<5.0	<5.0	<5.0	BDL	<5.0	<5.0	<0.020	<5.0	7	_
MW-16	08/20/02	5.23	1.	1G8	TOB	BDL	108	BDL	BDL	BDL	BDL	ΙN	BDL	_
MW-16	09/25/03	1	;	<5.0	<5.0	<5.0	<5.0	108	<5.0	<5.0	<0.020	IN	11.0	_
MW-16	04/20/04	; 	;	<5.0	<5.0	<5.0	<5.0	BDF	<5.0	<5.0	¥	IN	N	
MW-16	01/25/05	;	;	<5.0	2.4	<5.0	<5.0	2.4	<5.0	<5.0	<0.020	<5.0	N	
MW-16	07/27/05	1	!	<5.0	<5.0	<5.0	<5.0	108	<5.0	<5.0	IN	Ā	N	·
MW-16	10/19/05	;	1	<5.0	<5.0	<5.0	<5.0	BDL	<5.0	<5.0	<0.020	N	IN	,
MW-16	07/10/06	,	-	<5.0	<5.0	<5.0	<5.0	BDL	<5.0	<5.0	<0.020	<5.0	NŢ	
Notes:	 μg/l = micrograms per liter 	rograms pe	er liter				1	2) MTBE =	= Methyl-Tertiary-Butyl Ether	tiary-Buty!	Ether			-
	2)mg/l = milligrams per liter	ligrams per Foctod	liter					6) Bolded α	6) Bolded concentrations exceed RBSL's	ons exceec	1 RBSL's			
	4) NL= Not Located	rested ocated				MGINEFERING & INVIRONMENTAL	WENTA:	7) BDL = B(7) BDL = Below Practical Detection Limits	cal Detectic	on Limits	(
												Ра	Page 8 of 11	

	SCDHEC Site ID # 07359 GS2 Project # 09-3114-1	AL GROUNDWATER ANALYTICAL RESULTS (PRIMARY CoC)	Total Lead (μg/l) 1, 2 DCA (mg/l) EDB (μg/l) MTBE (μg/l) Napthalene (μg/l) Total BTEX (μg/l)	n/a 25 40 0.05 n/a 15	0 <5.0	BDL BDL BDL NT BDL	BDL <5.0 <5.0 0.027 NT 26.0	<5.0 NT NT	2.0 <5.0 <5.0 <0.020 2.5 NT	BDL <5.0 <5.0 NT NT NT	BDL <5.0 <5.0 <0.020 NT NT	BDL <5.0 <5.0 <0.020 <5.0 NT	BDL <5.0 <5.0 0 <5.0 2	BDL BDL BDL NT 6.0	BDL <5.0 <5.0 0.027 NT 47.0	BDL <5.0 <5.0 NT NT NT	35 <5.0 <5.0 0.040 <5.0 NT	. <5.0 <5.0 NT NT	BDL <5.0 <5.0 <0.020 NT NT	BDL 5.1 <5.0 <0.020 <5.0 NT	5) MTBE = Methyl-Tertiary-Butyl Ether) BDL = Below Practical Detection Limits
TABLE 8		UNDWATER ANALYTICAL	(μg/l) Total Xylenes (μg/l) Ethylbenzene (μg/l)	700 10,000	<5.0 <5.0 B	BDL BDL B	<5.0 <5.0 B	<5.0 <5.0 B	<5.0 <5.0	<5.0 <5.0 B	<5.0 <5.0 B		<5.0 <5.0 B	BOL BOL B	<5.0 <5.0 B	<5.0 <5.0 B	<5.0 12	<5.0 <5.0 B	<5.0 <5.0 B	<5.0 <5.0 B	W (2) W		7) BI
	lity olina	SUMMARY OF HISTORICAL GRO	Toluene (µg/l) Benzene (µg/l)	5 1,000	<5.0 <5.0	BDL BDL	<5.0 <5.0	<5.0 <5.0	2.0 <5.0	<5.0 <5.0	<5.0 <5.0	\dashv	<5.0 <5.0	BDL BDL	<5.0 <5.0	<5.0 <5.0	18 5.2		<5.0 <5.0	<5.0 <5.0			
	bia Maintenance Facil , Columbia, South Car	SUMMAR	Water (Ft.) (Ft.)	n/a n/a	5.53	8.56	1	;	;	;	;	_	_	36.89	;	1		-	-		 µg/l = micrograms per liter 	2)mg/l = milligrams per liter	t lested
	Former SCDOT Columbia Maintenance Facility 3736 Marsteller Drive, Columbia, South Carolina		Well ID Date	RBSL	MW-16 05/28/09		┪		MW-17 01/25/05	-	-	\dashv	+	\dashv	-	\dashv	+	\dashv	_	MW-18D 07/10/06	Notes: 1) $\mu g/l = m$	2)mg/l = m	3) N = Not lested

	eller Drive, (columbia,	3736 Marsteller Drive, Columbia, South Carolina	3736 Marsteller Drive, Columbia, South Carolina							SS	GS2 Project # 09-3114-1	5S2 Project # 09-3114-1
			SUMMAR	SUMMARY OF HISTORIC	RICAL GRO	UNDWATE	ER ANALYT	AL GROUNDWATER ANALYTICAL RESULTS (PRIMARY CoC)	LTS (PRIM)	4RY CoC)			
Well ID	Sample Date	Water Level (Ft.)	Product Thickness (Ft.)	Benzene (µg/l)	Toluene (µg/l)	Ethylbenzene (µg/l)	Total Xylenes (µg/l)	Total BTEX (μg/l)	Napthalene (μg/l)	MTBE (μg/l)	EDB (μg/l)	1, 2 DCA (mg/l)	Total Lead (μg/l)
RBSL		n/a	n/a	5	1,000	700	10,000	n/a	25	40	0.05	- c/u	ŧ
MW-19	12/17/08	14.46	0.09	Ĭ	ΙN	ΙN	į	Į	į	I A	E LA	II/ a	
┪	02/59/09	14.75	0.01	29,000	31,000	<2500	13,100	73,100	<2500	<2500	650	<2500	10801
┪	12/12/08	14.26	1	IN	Ā	IN	N	Σ	Z	¥	NT	IN	P L
MW-20	02/53/09	13.85		810	3,800	410	3,030	8,050	120	<5.0	5	<5.0	161.0
MW-21	12/12/08	14.84	1	IN	NT	Þ	ŢN	¥	Z	ž	Į	ΙΝ	I
MW-21	02/53/09	14.75	1	2,300	3,300	530	2,680	8,810	<500	<500	12	<500	181.0
MtW-22	12/12/08	15.16	0.08	MT	NT	NT	IN	IN	IN	Z	Į	LN	ž
MW-22	05/29/09	15.11	:	5,300	17,000	<2500	12,000	34,300	<2500	<2500	64	<2500	1620.0
MW-23	12/12/08	14.23	;	IN	INT	NT	NT	ΙΝ	ΝŢ	Ä	Ł	ΙN	Ę
\dashv	05/29/09	14.65	1	72	580	290	1,560	2,502	68	<5.0	0	<5.0	21.2
+	12/12/08	15.63	0.24	M	NT	NT	NT	IN	NT	IN	Ę	ΙZ	Į
+	05/29/09	15.42	1.42	8,600	30,000	3,400	18,600	60,600	<2500	<2500	133	<2500	447.0
+	12/12/08	14.44	;	Þ	¥	ΙN	NT	IN	Ν	ΙN	ΙN	ΙΝ	N
+	60/67/50	14.12	;	1,500	9,100	1,800	8,400	20,800	<500	<500	4	<500	84.3
+	12/12/08	16.73	0.80	뉟	ΙN	N	NT	IN	N	Ξ	ΙZ	Έ	N
70	60//7/50	15.94	0.51	6,500	6,900	2,200	7,800	23,400	069	470	43	72	99.1
Notes: 1.	1) µg/l = micrograms per liter 2)mg/l = milligrams per liter	rograms pe igrams per l	ır liter liter		•			5) MTBE = 1	Methyl-Te	5) MTBE = Methyl-Tertiary-Butyl Ether	Ether		
w s	3) NT = Not Tested	ested		_	ン	200		7) BDL = Be	Jow Practic	7) BDL = Below Practical Detection Limits	r RBSL'S in Limits		
4	4) NL= Not Located	ocated				STREET OF STREET						Dage	Dage 10 of 11

rmor	Former SCDOT Columbia Maintenance					TABLE 8	м 8						
6 Marst	3736 Marsteller Drive, Columbia, South Carolina	columbia, s	ance racili South Caro	ty Ilina			i				S S	SCDHEC Site ID # 07359 GS2 Project # 09-3114-1	ID # 07359 09-3114-1
			SUMMARY	SUMMARY OF HISTORICAL GROUNDWATER ANALYTICAL RESULTS (PRIMARY CoC)	RICAL GRO	UNDWATE	ER ANALYT	ICAL RESUL	TS (PRIMA	RY CoC)			
Well ID	Sample Date	Water Level (Ft.)	Product Thickness (Ft.)	Benzene (µg/I)	Toluene (µg/l)	Ethylbenzene (µg/l)	Total Xylenes (μg/l)	Total BTEX (μg/l)	Napthalene (μg/l)	MTBE (μg/l)	EDB (µg/l)	1, 2 DCA (mg/l)	Total Lead (μg/l)
RBSL		n/a	n/a	5	1,000	700	10,000	n/a	25	40	0.05	n/a	15
MW-27	12/12/08	15.01		INT	Ę	ΝŢ	N	IN	NT	TN	ŢŅ	Z	į
MW-27	05/59/09	15.65	-	9,300	11,000	1,100	5,600	27,000	350	<250	190	<250	242.0
	-												
Notes:	 µg/l = micrograms per liter milligrams per liter NT = Not Tested 	crograms per ligrams per Tested	er liter Iiter			CSS		5) MTBE = 6) Bolded c 7) BDL = Be	 5) MTBE = Methyl-Tertiary-Butyl Ether 6) Bolded concentrations exceed RBSL's 7) BDL = Below Practical Detection Limits 	tiary-Butyl ons exceed al Detectio	Ether I RBSL's on Limits		
	4) NL= Not Located	ocated			ENUX	nctreering & Environmental Consultants, Inc.						Page	Page 11 of 11

Job Name: Former Columbia Maintanance

Job Number: 09-3114-1

Date Performed: 5.27/28/29

Site ID Number: 07359

PRODUCT BAIL DOWN TEST FORM

Well ID: MW-26

Initial Product Level: 15.48' Initial Water Level: 15.94' Product Thickness: 0.51' Well ID: MW-24

Initial Product Level: 14.00' Initial Water Level: 15.42' Product Thickness: 1.42'

	Tilless				Product	: Thickness:	: 1.42'		
Time	E-Time	Product Level	Water Level	Product Thickness	Time	E-Time	Product Level	Water Level	Product Thickness
2:45p	0	NM	NM	0.01	11:00a	0	NM	NM	0.01'
3:00p	0:15	15.64'	15.79'	0.15'	11:15a	0:15	14.41'	14.61'	0.01
3:15p	0:30	15.60'	15.74'	0.14'	11:30a	0:30	14.42'	14.64	
3:30p	0:45	15.59'	15.72'	0.13'	11:45a	0:45	14.40'	14.62'	0.22'
3:45p	1:00	15.58'	15.70'	0.12'	12:00p	1:00	14.39'	14.62	0.22' 0.21'
4:00p	1:15	15.55'	15.68'	0.13'	12:15p	1:15	14.38'	14.58'	
4:15p	1:30	15.53'	15.66'	0.13'	12:30p	1:30	14.36'	14.55'	0.20' 0.19'
4:30p	1:45	15.52'	15.65'	0.13'	12:45p	1:45	14.36'	14.55'	0.19
5:00p	2:15	15.50'	15.63'	0.13'	1:00p	2:00	14.36'	14.55'	0.19
5:30p	2:45	15.48'	15.62'	0.14'			17.50	14,55	0.19
6:00p	3:15	15.47'	15.61'	0.14'	-				
6:30p	3:45	15.46'	15.60'	0.14'		_			
2:15p	23:30	15.39'	15.65'	0.26'					
					·	_			
									
						 -			···-
							-		
									
	,						 		<u> </u>
			<u> </u>			-	 	-	-
	-								<u> </u>
			_		- -	- 			
						-			
					 		- 		
							 +		
									

Gallons Removed: 5

Gallons Removed: 8

Page: 63

Job Name: Former Columbia Maintanance

Job Number: 09-3114-1

Date Performed: 5/29/09

Site ID Number:

07359

PRODUCT BAIL DOWN TEST FORM

Well ID: MW-36

Initial Product Level: 14.96 Initial Water Level: 17.21' Product Thickness: 2.25'

Well ID:

Initial Product Level: Initial Water Level:

Pr	o	uk	ct	Τh	icl	kn	ess

Floudet	Product mickness: 2.25					Product Thickness:					
Time	E-Time	Product Level	Water Level	Product Thickness	Time	E-Time	Product Level	Water Level	Product Thickness		
11:40a	0	16.02'	17.62'	1.60'		_		2000	THICKIES		
12:00p	0:20	15.31'	17.45'	2.14'	i e	··-			 -		
12:41	0:41	15.21'	18.79'	3.58'		···			 		
	-				-		-		 		
						- -					
	<u> </u>				_		· · · · ·	····			
_											
				_							
								_	- - -		
			· -								
-											
+											
\dashv		- -							· . ·		
									 		
							<u> </u>	_			
		-									
+											
						 _			<u> </u>		
-			_	 -					<u> </u>		
						 .	-				
		 +	-	· ·· ·				<u>-</u> .			
- -		 +					-				
									· .		
illons R	emoved: 1	L5 gallons b	ailed in 20	minutes	Gallons R	lemoved:					

Gallons Removed: 15 gallons bailed in 20 minutes Gallons Removed:

Former SCDOT Columbia Maintenance Facil	itv
3736 Marsteller Drive, Columbia, SC	,

SITE ID# 07359 GS2 Project# 09-3114-1

TAX MAP INFORMATION

TABLE 10

	1	TAX WAF INFORMATION	<u> </u>					
Tax Map Numbe		Owner Address	City	State	Zip Code	Wells on Property		
R09213-04-07	SILVER SPUR PROPERTIES LLC	PO BOX 117	COLUMBIA	sc	29203	YES		
	Subject Site where	e MW-1 to MW-14, MW-18D to	MW-49, and I	DW-1 to	DW-6 are	ocated.		
R09213-02-10	SILVER SPUR PROPERTIES LLC	PO BOX 117	COLUMBIA	sc	29202	YES		
		Located North of subject site	and contains I	VIVV-12	_			
R09213-04-11	HOUSING OF AUTHORITY /CITY	1917 HARDEN ST	COLUMBIA	sc	29204	YEŞ		
	Located East of RR Tracks & contains MW-14 to MW-17.							
	LITTLE FIVE	The second secon	TRAITIS IVIVV-14	IO IVI VV-	<u> </u>			
R09213-04-04	POINTS, INC.	1306 ELMORE ST	COLUMBIA	sc	29203	NO.		
·	QUAKER	T	·					
R09213-04-06	CHEMICAL CO. INC.	1212 ELMORE ST	COLUMBIA	sc	29203	NO		
	BARBARA ANN		<u> </u>					
R09213-07-06	KRONRAD	PO BOX 135	COLUMBIA	sc	29202	NO		
	JJ PROPETY	<u> </u>						
R09213-01-25		17 MORNING BREEZE CT	CHAPIN	sc	29036	NO		
	JJ PROPERTY							
R09213-02-08	MANAGEMENT, INC	1929 MARION ST	COLUMBIA	sc	29201	NO		
		· · · · · · · · · · · · · · · · · · ·						
R09213-02-07	SCDOT	955 PARK ST	COLUMBIA	sc	29202	NO		
	ALTHEA C.							
	HOUSER & TODD	3805 GLENDON RD	COLUMBIA	sc :	29203	NO		
	<u> </u>							
R09213-01-14	TALLEY EULALIA	1303 ELMORE ST	i	1	29203	YES		
	<u></u>	ocated West of the subject site	and contains	MW-11				
R09213-01-13	Owner or address not listed		COLUMBIA	sc 2	29203	NO		
			·L					
						——		
F		·						
	<u> </u>							

Notes: See Figure 2 for reference Мар.

Page 1 of 1

NOTES: Deep Well results no

SCDHEC IFB-37166-11/5/09-EMW

Page: 66

E. Soil Boring Data

Drilling Dates 8/17-18/00

Provide a brief justification for the location of the soil borngs:

B-1	Installed in former 1,000 Gallon Waste Oil UST area.
B-2	Installed in former 500 Gallon Kerosene UST area.
B-3	Installed in former 1,000 Gallon Gasoline UST area.
B-4	Installed in former 1,000 Gallon Gasoline UST area.
B-5	Installed in former 1,000 Gallon Diesel dispenser area.
B-6	Installed former 1,000 Gallon Diesel UST basin.
B-7	Installed in former 12,000 Gallon Diesel UST basin.

Field Screening Procedures

Soil samples were composited at two-foot intervals during boring advancement, classified in the field, and retained for total organic vapor analysis. The samples were placed in plastic bags, sealed, allowed to volatilize for at least ten minutes, and analyzed for organic vapors using a Foxboro Model 128, flame ionization detector. The soil sample collected form the interval exhibiting the highest vapor concentration from each boring was retained for laboratory analysis. If no elevated vapor concentrations were detected, the deepest sample collected from above the anticipated water table was analyzed. Each sample was placed in a laboratory prepared sample container, packed in an iced cooler with chain of custody documentation, and shipped to a South Carolina certified laboratory for analysis.

FORMER UST AREA BORINGS-

Borehole B-1

Split Spoon Interval <u>(</u> ft.)	Field Screening Results (ppm)	Lithology (soil type, color, rocks/minerals present)	Soil Conditions (dry, moist, etc; petroleum odor)
4-6,	2	Silty sand, trace clay, brown- orange, loose	Dry, no odor
*9-11	9.5	Sandy clay, tan, orange, brown, firm	Moist, no odor
14-16	22	Sandy clay to clay, mottled gray, yellow-orange, firm	. Moist, no odor
19-21	120	Clayey sand, orange, gray	Saturated, no odor

Note: * - sample submitted for laboratory analysis.

SCDOT – Marsteller Street QORE Job No. 2633, 113257 September 22, 2000 Page No. 5

Borehole B-2

Split Spoon Interval (ft.)	Field Screening Results (ppm)	Lithology (soil type, color, rocks/minerals present)	Soil Conditions (dry, moist, etc; petroleum odor)
4-6	1	Sandy clay, red-orange, gray, yellow, firm	Dry, no odor
9-11	2	Sandy clay to clay, gray, orange streaks, very firm	Dry, no odor
14-16	220	Clay to sand, pink, gray, orange	Moist, trace odor

Borehole B-3

Split Spoon Interval (ft.)	Field Screening Results (ppm)	Soil Conditions (dry, moist, etc; petroleum odor)	
4-6*	140 Clayey sand, orange, tan, dark gray, firm		Dry, petroleum odor
9-11	50	Clay, gray, red streaks, firm	Dry, trace odor
14-16	800	Clay to clayey sand, orange, tan, brow, loose	Wet, petroleum odor

Borehole B-4

Split Spoon Interval (ft.)	Field Screening Results (ppm)	Lithology (soil type, color, rocks/minerals present)	Soil Conditions (dry, moist, etc; petroleum odor)
4-6	1	Sandy clay, mottled, red, yellow, orange, firm	Dry, no odor
9-11	100	Sandy clay to clayey sand to clay	Dry, moist, dry, no odor
14-16*	>1000	Clay to siity clayey sand, tan, orange, loose	Moist, strong petroleum odor

SCDOT – Marsteller Street QORE Job No. 2633, 113257

September 22, 2000 Page No. 6

Borehole B-6

Split Spoon Interval (ft.)	Field Screening Results (ppm)	Lithology (soil type, color, rocks/minerals present)	Soil Conditions (dry, moist, etc; petroleum odor)
4-6	0	Clayey sand, brown, yellow, orange, firm	Dry, no odor
9-11*	0	Clayey sand to clay, tan, gray, firm	Moist to dry, no odor
14-16	1	Silty sand, tan, gray, trace orange clay bands	Moist, no odor

Borehole B-7

Split Spoon Interval (ft.)	Field Screening Results (ppm)	Lithology (soil type, color, rocks/minerals present)	Soil Conditions (dry, moist, etc; petroleum odor)
4-6	1.4	Clayey sand, orange-gray, firm	Dry, no odor
9-11*	1.4	Clay, gray with red-orange, firm	Dry, no odor
14-16	1.2	Silty sand, tan, gray,trace orange	Moist, no odor

Note * - sample submitted for laboratory analysis.

PIPING /DISPENSER AREA BORINGS

Borehole B-5

Split Spoon Interval (ft.)	Field Screening Results (ppm)	Lithology (soil type, color, rocks/minerals present)	Soil Conditions (dry, moist, etc; petroleum odor)	
0-2	580	Clayey sand, tan, brown, loose	Moist, petroleum odor, staining	
2-3	>1000	Clayey sand, tan, brown, loose	Moist, petroleum odor, staining	
3-4	>1000	Sandy clay, mottled red, orange, tan, firm	Dry, petroleum odor, staining	
4-6	>1000	Sandy clay, mottled red, orange, tan, firm	Dry, petroleum odor, staining	
6-8*	>1000	Sandy clay to rock @ 7.5 feet	et Dry, petroleum odor, staining	
8	NA	Auger refusal	NA	

SOIL BORING ANALYTICAL DATA

		· · · · · ·		<u> </u>	<u> </u>	,	l .	
CoC	RBSL	B-1 9-11'	B-2 14-16'	B- 3 4-6'	B-4 14-16'	B-5 6-8'	B-6 9-11'	B-7 9-11'
Benzene	5.0	<5.0	<5.0	<5.0	108	219	<5.0	<5.0
Toluene	1,640	34.0	35.3	57.2	1,530	1,050	15.1	<5.0
Ethylbenzene	1,292	24.3	24.8	25.7	754	5,360	25.2	<5.0
Xylenes	42,898	102.5	79.7	113.2	4,520	17,750	78.9	<10.0
MTBE	NE	<5.0	<5.0	<5.0	62.2	<5.0	<5.0	<5.0
Naphthalene	211	<5.0	<5.0	14.7	1,580	774	102	<5.0
Benzo(a)anthracene	73,084	<330	<330	<330	<330	<330	<330	<330
Benzo(b)fluoranthene	29,097	<330	<330	<330	<330	<330	<330	<330
Benzo(k)fluoranthene	231,109	<330	<330	<330	<330	<330	<330	<330
Chrysene	12,998	<330	<330	<300	<300	<300	<330	<330

September 22, 2000 Page No. 8

SOIL BORING ANALYTICAL DATA (Continued)

î			_		Ţ 		· · · · · · · · · · · · · · · · · · ·	,
CoC	RBSL	B-1 9-11'	B-2 14-16'	B-3 4-6'	B-4 14-16'	B-5 6-8'	B-6 9-11'	B-7 9-11'
Dibenz(a,h)anthracene	87,866	<100	<100	<100	<100	<100	<100	<100
TPH (EPA 3550) mg/kg	NE	NA	NA	NA	NA	NA	NA	NA
TOC (Background boring) mg/kg	NE	NA	NA	NA	NA	NA	NA	NA

Notes:

- 1) All results are reported in micrograms per kilogram (ug/kg) except where noted.
- 2) RBSL = South Carolina Risk-Based Screening Levels as listed in Table B3, (<5 feet) of the SCDHEC Risk Based Corrective (RBCA) Document (January, 1998).
- 3) NE =none established.
- 4) ND = not detected.
- 5) NA = not analyzed.
- 6) Soil samples were collected on August 17-18, 2000.
- 7) <= Less than the detection limit.
- 8) Results in boldface type indicate CoC concentrations greater than their respective RBSLs.

MONITORING WELL SOIL ANALYTICAL DATA

CoC	RSBL	MW-3 9-11'	MW-4 9-11'	MW-5 9-11'
Benzene	5	<5.0	<5.0	<5.0
Toluene	1,640	<5.0	11.1	8.45
Ethylbenzene	1,292	<5.0	8.28	5.55
Xylenes	42,895	<10.0	38.3	23.45
MTBE	NE	<5.0	<5.0	<5.0
Naphthalene	211	<5.0	17.5	13.2
Benzo(a)anthracene	73,084	<330	<330	<330
Benzo(b)fluoranthene	29,097	<330	<330	<330
Benzo(k)fluoranthene	231,109	<330	<330	<330
Chrysene	12,998	<330	<330	<330

MONITORING WELL SOIL ANALYTICAL DATA (Continued)

CoC	RSBL	MW-3 9-11'	MW-4 9-11'	MW-5 9-11'
Dibenz(a,h)anthracene	87,866	<100	<100	<100
TPH (EPA 3550) mg/kg	NE	<0.005	NA	NA
TOC (Background boring) mg/kg	NE .	NA	NA	80

- Notes: 1) All results are reported in micrograms per kilogram (ug/kg) except where noted.
 - 2) RBSL = South Carolina Risk-Based Screening Levels as listed in Table B3, (<5 feet) of the SCDHEC Risk Based Corrective (RBCA) Document (January, 1998).
 - NE =none established.
 - 4) ND = not detected.
 - 5) NA = not analyzed.
 - 6) Soil samples were collected on August 17-18, 2000.
 - 7) <= Less than the detection limit.
 - Results in boldface type indicate CoC concentrations greater than their respective RBSLs.

Soil Analytical Data

The soil sample from MW-3 was analyzed for grain size distribution (Sand 74%, Silt 4.0%, Clay 22.0%). The soil sample collected from each borehole which exhibited the highest organic vapor analysis (OVA) concentration above the water table was selected for analysis of benzene, toluene, ethylbenzene, xylenes (BTEX) per EPA Method 8260 and polynuclear aromatic hydrocarbons (PAHs) per EPA Method 8270. If no organic vapors were detected, a soil sample was selected from the bottom of the boring. Based on the OVA results, a worst case sample was selected for total petroleum hydrocarbons (TPH) per EPA method 3550/8015. Only benzene in B-4 and B-5, ethylbenzene in B-5 and naphthalene in B-4 and B-5 exceeded their RBSLs of 5.00, 1,292, and 210 mg/kg, respectively. The laboratory reports with chain of custody documentation are included in the Appendix. A soil CoC map is included as Figure 4. Soil generated during soil boring and monitoring well installation was placed in two labeled 55-gallon drums and subsequently picked up and disposed of by G&K tank Services, Sumter, South Carolina. A disposal manifest is included in the Appendix.

September 22, 2000 Page No. 10

F. Chemicals of Concern-Ground Water

WELL NO.	INSTALLATION DATE	DEVELOPMENT DATE	SAMPLING DATE
MW-1	3/27/00	3/27/00	3/30/00
MW-2	3/27/00	3/27/00	3/30/00
MW-3	8/18/00	8/18/00	8/21/00
MW-4	8/18/00	8/18/00	8/21/00
MW-5	8/18/00	8/18/00	8/21/00

Monitoring well and ground water elevation

WELL NO.	TOC ELEVATION (ft)	SCREENED INTERVAL (ft)	DEPTH TO WATER (ft)	WATER TABLE ELEVATION (ft)
MW-1	99.13	8-18	Dry	Dry
MW-2	96.68	8-18	16.65	80.78
MW-3	99.86	14-24	18.9	80.96
MW-4	99.21	14-24	17.29	81.92
MW-5	101.70	14-24	19.57	82.13

Note: <u>0.96</u> feet of free product was measured in monitoring well MW-2. The water table elevation was converted based on the product thickness.

Enter dissolved oxygen measurements for each well in the Table below

Monitoring Well	MW-1	MW-2	MW-3	MW-4	MW-5
Dissolved Oxygen	NR	NR	2.83	1.39	7.01

Dissolved oxygen was not measured in MW-1 due to a lack of water, or in MW-2 due to a presence of free product.

Page: 89 September 22, 2000

Page No. 11

GROUND WATER ANALYTICAL DATA

СоС	RBSL (ug/l)	MW-1	MW-2	MW-3	MW-4	MW-5
Free Product Thickness		None	0.96 ft	None	None	None
Benzene	5.0	NS	NS	7,475	3.21	2.42
Toluene	1,000	NS	NS	9,794	5.98	3.37
Ethylbenzene	700	NS	NS	1024	<1	<1
Xylenes	10,000	NS	NS	1,773	1.5	<1
Total BTEX	NE	NS	NS	20,066	10.69	5.79
МТВЕ	40	NS	NS	540	<1	<1
Naphthalene	10	NS	NS	<1	23.5	<1
Benzo(a)anthracene	10	NS	NS	<0.20	<0.20	<0.20
Benzo(b)fluoranthene	10	NS	NS	<0.20	<0.20	<0.20
Benzo(k)fluoranthene	10	NS	NS	<0.50	<0.50	<0.50
Chrysene	10	NS	NS	<5.00	<5.00	<5.00
Dibenz(a,h)anthracene	10	NS	NS	<0.20	<0.20	<0.20
Lead (mg/l)	Site Specific	NS	NS	0.052	0.028	<0.005
Nitrate (mg/l)	NE	NS	NS	0.17	1.03	1.19
Ferrous Iron (mg/l)	NE	NS	NS	2.5	1.3	<0.03
Sulfate (mg/l)	NE	NS	NS	2.73	2.29	4.64

Notes:

- All results are reported in micrograms per liter (ug/l) except where noted.
- 2) 3) 4) NE = none established.
- NS = not sampled.
- Ground water samples were collected on August 21, 2000.
- 5) Results in boldface type indicate CoC concentrations greater than their respective RBSLs.
- MW-1 not sampled due to lack of water
- 7) MW-2 not sampled due to presence of free product

September 22, 2000 Page No. 12

F. Ground Water Analytical Data

The ground water RBSLs for benzene, tolene, ethylbenzene, and MTBE were exceeded at monitoring well MW-3. Approximately 0.96 feet of free product was measured in MW-2. No samples were collected from MW-2 due to free-product, or from MW-1 due to insufficient water. Lead was detected in ground water samples collected from MW-3 and MW-4. All other analyzed parameters were below detection limits. Field data information sheets for each well sampled are provided in the Appendix. Laboratory certificates of analysis and chain of custody records are included in the Appendix. Ground water generated during the sampling of the wells was placed in a labeled 55-gallon drum and subsequently picked up and disposed of by G&K Tank Services, Sumter, South Carolina. A disposal manifest is included in the Appendix. A ground water CoC map is included as Figure 5. Analysis of inorganic parameters indicate natural biodegradation is occurring on-site.

G. Aquifer Characteristics

Water level measurements at all monitoring wells were recorded with a clean water level meter accurate to 0.01 feet. A potentiometric map of the water table aquifer, based on water level measurements obtained from site monitoring wells, is included was Figure 3. The hydrogeologic data indicates the predominant ground water flow direction in the upper zone of the shallow aquifer is to the southeast with a hydraulic gradient of 0.025 ft/ft. Estimates of hydraulic conductivity (K) of the sediments at the site were obtained from borehole permeability (slug) tests. The tests were performed by inserting a 1.5 inch diameter by five foot PVC pipe into the well, removing it quickly, and then recording the response as the water level returned to equilibrium. The Bouwer and Rice method was used to interpret the field data and assess the hydraulic conductivity of the aquifer. A summary of slug test data test results, and the calculated semilog graphs of drawdown versus time are included in the Appendix.

The rate of horizontal ground water flow at the site is controlled by the horizontal hydraulic conductivity (K), effective porosity (n), and the horizontal gradient (dh/dl). The linear ground water seepage velocity (v) can be calculated by substituting these values into the modified Darcy equation:

$v = (K/n_e) (dh/dl)$

Two borehole permeability tests were performed on monitoring wells to estimate the hydraulic conductivity of the surfical aquifer at the well screen. The calculated hydraulic conductivities ranged from 7.8 feet/day (MW-4) to 0.18 feet/day (MW-5), which is in a range of values which may be expected for the subsurface lithology identified at the site. A horizontal gradient of 0.025 ft./ft., based on ground water elevations recorded on August 21, 2000, was calculated for the site. The effective porosity (n_e) in a water table aquifer for soil described at the site is estimated to be approximately 0.25 (McWorter and Sunada, 1977). Thus, the linear ground water flow velocity, calculated from the modified Darcy equation using a conductivity of 7.8 feet/day is estimated to be 0.78 feet/day or 285 feet/year.

SCDHEC IFB-37166-11/5/09-EMW Page: 91

SCDHEC IFB-37166-11/5/09-EMW Page: 92

	Jar	2.60	211013/11 //4 431413 //	0.001
T REPORT	REVIEWED BY:	SP. GRAVITY, Gs: FINES, %: COEFF. OF CURVATURE, Cc: COEFF. OF UNIFORMITY, Ci.:		0.010
V TES	9/1/00	11.9		
N SIZE DISTRIBUTION TEST REPORT (ASTM D422)	DATE:	MOISTURE, %: D60, MM: AASHTO:	SAND FINE	0.100 SIZE IN MILLIMETERS
GRAIN SIZ	Columbia Maintenance REPORT NO.: DEPTH / ELEV.: 9-11 Ft.	Orangish Brown Clayey Fine to Medium SAND PLASTICITY INDEX, %: D30, MM:	FINE COARSE N	10.000 1.000 GRAIN
	SCDOT - Co. 2633 R MW-3 D	Zrangish Bro	GRAVEL COARSE	
Q O R E"	JOB NAME: S JOB NO.: BORING / PIT NO.:	-1		100.000

GRAIN SIZE DISTRIBUTION TEST DATA SHEET (ASTM D422) SCDHEC ORE" IFB-37166-11/5/09-EMW Page: 94 SCDOT - Columbia Maintenance JOB NAME: ່າວB NO. : 2633 REPORT NO. : DATE : 9/1/00 REVIEWED BY : JRING / PIT NO. : MW-3 DEPTH / ELEV.: 9-11 Ft. SAMPLE TYPE: **SAMPLE NO.:** Jar SAMPLE LOCATION: SP. GR., Gs: SOIL DESCRIPTION: Orangish Brown Clayey Fine to Medium SAND 2.6 FINES, %: LIQUID LIMIT, %: PLAS. INDEX, %: MOISTURE, %: 11.9 26 D₁₀ , MM : D30, MM: D60, MM: COEF. OF CURV ., Cc : CLASSIFICATION UNIFIED: SM AASHTO: COEF . OF UNFOR. , Cu : SPLITTING AIR DRIED / AS RECEIVED MATERIAL ON # 10 SIEVE AIR DRIED WEIGHT OF TOTAL SAMPLE 140.3 GRAMS PAN / BEAKER NO. : 32.04 AIR DRIED WEIGHT RETAINED ON # 10 SIEVE **GRAMS** PAN / BEAKER NO. : 28.1 İGRAMS PAN / BEAKER NO. : (WASHED)OVEN DRIED WT. RETAINED ON # 10 AIR DRIED WEIGHT PASSING ON # 10 SIEVE 112.2 **GRAMS** 100.18066 GRAMS **EQUIVALENT OVEN DRIED WT. PASSING # 10** MOISTURE ON AIR DRIED / AS RECEIVED MATERIAL PASSING # 10 PAN NO. : 100.50 GRAMS WT. OF PAN (GRAMS) GRAMS AIR DRIED SOIL+ PAN (GRAMS) 215.60 203.27 GRAMS OVEN DRIED SOIL+ PAN (GRAMS) 11.998 % MOISTURE AIR DRIED / AS RECEIVED MATERIAL FOR SIEVE & HYDROMETER ANALYSIS BEAKER NO. : AIR DRIED MATERIAL PASSING # 10 115.1 GRAMS **OVEN DRIED MATERIAL PASSING # 10** 102.77 **GRAMS** OVEN DRIED MATERIAL REPRES. THE WHOLE SAMPLE 122.06 GRAMS WEIGHT MATERIAL PARTICLE MATERIAL SIEVE ANALYSIS DATA RETAINED RETAINED DIAMETER **PASSING** SIEVE SIZE (GRAMS) % % (MM) 0.00 0.00 75.00 100.00 2" 0.00 0.00 50.00 100.00 1 1/2" 0.00 0.00 37.50 100.00 1" 0.00 0.00 25.00 100.00 **COARSER THAN # 10 SIEVE** 3/4" 0.00 0.00 19.00 100.00 3/8" 0.00 0.00 9.50 100.00 #4 7.83 6.10 4.75 93.90 #10 20.27 15.80 2.000 84.20 # 20 16.16 29.04 0.850 70.96 33.76 43.46 0.425 56.54 **FINER THAN # 10 SIEVE** # 40 #60 50.71 57.35 0.250 42.65 #100 63.00 67.42 0.150 32.58 # 200 71.02 73.99 0.075 26.01 24.16 34.0 0.0457 9/13/00 9:30 5 22.8 1 23.33 2 33.0 0.0325 5 22.8 0.0206 23.33 5 22.8 5 33.0 5 33.0 0.0119 23,33 22.9 15 5 22.9 30 32.5 HYDROMETER DATA 0.0084 22.91 22.50 22.9 32.0 0.0060 5 60 21.66 5 22.8 1440 31.0 0.0012

READING

(Uncorrted)

ELAPSED TIME

(MINUTES)

Date &

Time

Zero

CORR.

Temp °C

Summary of Slug Test Division of Underground Storage Tank Management

Site Data				
UST Permit #:		County: _	Richan	<u> L</u>
UST Permit #: 07359 Facility Name: SCDOT - DIL Co.	lumbia Ma	interance !	Facility	
Slug Data			,	
See Appendix Table level logs, etc. (complete as appropriate)].				•
Water Level Recovery Data was measured by [Hermit Data Logger, Manually with Water Le			r level ind	cator
Complete the following table for each well tes	sted.		•	
COMPLETE A SECOND SHEET IF MORE TO	HAN FOUR WELLS	ARE TESTED		
Slug Test Conducted in Well(s) Number	MW-4	MW-5		
Initial Rise/Drawdown in Well (feet)	0,37	0.33	· · · · · · · · · · · · · · · · · · ·	
Radius of Well Casing (feet)	0.083	0.083		
Effective Radius of Well (feet)	0.33	0.33		
Static Saturated Aquifer Thickness (feet)	30	30		
Length of Well Screen (feet)	10	10		
Static Height of Water Column in Well (ft)	6.71	5.23		
Calculations				
See Appendix Table	Figure _	for c	alculations (comp	lete as appropriate).
The method for aquifer calculations was	<u> Souwer-Ric</u>	e	(i.e. Bouw	/er-Rice, Cooper, etc.).
Calculated values by well were as follows:				
Slug Test Conducted in Well(s) Numb			0-5	
Hydraulic Conductivity	9.02 x/0-	5 ft/sec 2.07 x1	o-k ft/sec	
Thickness of the aquifer used to calculate hyd	7・8 代十/ do raulic conductivity w	5 ft/sec 2.07x1	8 Ct/day	feet.
The aquifer is confined	semi-confir	ned wa	ater table (check as	s appropriate).
The estimated seepage velocity is	185			feet per year based on
a hydraulic conductivity of 7.8 ft/d	ay	, a hydraulic gradier	nt of	, and
a hydraulic conductivity of 7.8 ft/d a porosity of 25 percent for	clayey sand	soil (list ty	/pe i.e., silty sand ,	clay, etc).

SCDHEC

IFB-37166-11/5/09-EMW

Page: 96

SCDOT OLD COLUMBIA MAINTENANCE

Data Set: F:\USERS\GENE\SCDOT\2633MW4.AQT

Date: 09/15/00 Time: 10:05:23

PROJECT INFORMATION

Company: QORE Property Sciences

Client: SCDOT Project: 2633

Test Location: Columbia, South Carolina

Test Well: MW-4

Test Date: August 21, 2000

AQUIFER DATA

Saturated Thickness: 30. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Initial Displacement: 0.37 ft Water Column Height: 6.71 ft Casing Radius: 0.083 ft Wellbore Radius: 0.33 ft Screen Length: 6.71 ft Gravel Pack Porosity: 0.37

SOLUTION

Aquifer Model: Unconfined K = 9.017E-05 ft/sec

AQTESOLV for Windows

SCDOT Old Columbia Maintenance

Data Set: F:\USERS\GENE\SCDOT\2633MW4.AQT

Title: SCDOT Old Columbia Maintenance

Date: 09/15/00 Time: 10:05:29

PROJECT INFORMATION

Company: QORE Property Sciences

Client: SCDOT Project: 2633

Location: Columbia, South Carolina

Test Date: August 21, 2000

Test Well: MW-4

AQUIFER DATA

Saturated Thickness: 30 ft Anjsotropy Ratio (Kz/Kr): 1

OBSERVATION WELL DATA

Number of observation wells: 1

Observation Well No. 1: MW-4

X Location: 0 ft Y Location: 0 ft

Observation Data

Time (sec)	Displacement (ft)
12.	0.37
13.	0.27
16.	0.22
19.	0.17
25.	0.12
42.	0.07
59.	0.04
136.	0.02
203.	0.01
345.	0.

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

VISUAL ESTIMATION RESULTS

Estimated Parameters

SCDHEC

IFB-37166-11/5/09-EMW

Page: 98

 Parameter
 Estimate

 K
 9.017E-05
 ft/sec

 y0
 0.155
 ft

AUTOMATIC ESTIMATION RESULTS

Estimated Parameters

Parameter	Estimate	Std. Error	
K	0.0004716	8.738E-05	ft/sec
y0	0.814	0.1737	ft

Parameter Correlations

K 1.00 0.97 y0 0.97 1.00

Residual Statistics

for weighted residuals

 Sum of Squares
 0.006616 ft²

 Variance
 0.000827 ft²

 Std. Deviation
 0.02876 ft

 Mean
 0.008036 ft

No. of Residuals ... 10 No. of Estimates ... 2

SCDOT OLD COLUMBIA MAINTENANCE

Data Set: F:\USERS\GENE\SCDOT\2633MW5.AQT

Date: 09/15/00

Time: 09:53:36

PROJECT INFORMATION

Company: QORE Property Sciences

Client: SCDOT Project: 2633

Test Location: Columbia, South Carolina

Test Well: MW-5

Test Date: September 12, 2000

AQUIFER DATA

Saturated Thickness: 30. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Initial Displacement: 0.33 ft Water Column Height: 5.23 ft Wellbore Radius: 0.33 ft Wellbore Radius: 0.33 ft Gravel Pack Porosity: 0.37

SOLUTION

Aquifer Model: Unconfined K = 2.074E-06 ft/sec

AQTESOLV for Windows

Data Set: F:\USERS\GENE\SCDOT\2633MW5.AQT

Title: SCDOT Old Columbia Maintenance

Date: 09/15/00 Time: 09:53:44 SCDHEC

IFB-37166-11/5/09-EMW

Page: 100

PROJECT INFORMATION

Company: QORE Property Sciences

Client: SCDOT Project: 2633

Location: Columbia, South Carolina Test Date: September 12, 2000

Test Well: MW-5

AQUIFER DATA

Saturated Thickness: 30 ft Anjsotropy Ratio (Kz/Kr): 1

OBSERVATION WELL DATA

Number of observation wells: 1

Observation Well No. 1: MW-5

X Location: 0 ft Y Location: 0 ft

Observation Data

Time (sec)	Displacement (ft)
14.	0.33
44.	0.28
105.	0.23
215.	0.22
254.	0.21
416.	0.19
734.	0.17
1080.	0.15
1623.	0.13
2256.	0.11
3152.	0.09
4030.	0.07
5306.	0.05
7057.	0.03
1.037E+04	0.01
1.242E+04	0.

SOLUTION

AQTESOLV for Windows

SCDOT Old Columbia Maintenance

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

SCDHEC

IFB-37166-11/5/09-EMW

Page: 101

VISUAL ESTIMATION RESULTS

Estimated Parameters

Parameter

Estimate

Κ

2.074E-06

ft/sec

y0

0.2247 ft

AUTOMATIC ESTIMATION RESULTS

Estimated Parameters

Parameter $\overline{\mathsf{K}}$

Estimate

Std. Error

3.968E-07

y0

2.748E-06 0.258

0.01222

ft/sec ft

Parameter Correlations

y0

K 1.00 0.54

y0 0.54 1.00

Residual Statistics

for weighted residuals

Sum of Squares ... 0.01011 ft²

Variance 0.0007222 ft²

Std. Deviation..... 0.02687 ft

Mean 0.002244 ft

No. of Residuals ... 16

No. of Estimates ... 2

	Well	Sample	Dissolved	Dissolved	Temperature	ta.	_	Conductivity	ctivity	Ferrous	Depth to	Product	Depth to	Well-head	Groundwater
	Number	Date	Oxygen (mg/l)	CO ₂ (mg/l)	(celsius)	(Initial)	(Final)	(Initial)	(Finat)	roa (mgri)	rroance	LIICHIESS	water (seet)	Elevation	Elevation
	MW-1R	8/20/2002	0.71	200+	23.1	5.60	2,61	76.6	89.5	9.6	;	1	18.15	249.01	230.86
	MW-2	8/20/2002	¥	ķ	TN	Ę	Ĭ	¥	N	I.V	15.82	1.12	16.94	246.62	230.63
_	MW-3	8/20/2002	0.58	200≁	30.1	5.72	5.85	152.5	179.0	3.2	1	ı	19.05	249.80	230.75
_	MW-4	8/20/2002	2.65	100	30.7	4.80	5.23	125.3	126.7	0.0	1	I	17.51	249.15	231.64
	MW-5	8/20/2002	71.0	125	23.1	5.87	5.43	48.7	73.2	0.0	ł	ı	20.08	251.65	231.57
	MW-6	8/20/2002	0.98	150	24.5	4.83	10.9	112.2	153.8		1	ı	15.15	242.39	227.24
	2:MAM	8/20/2002	0.68	200+	24.5	5.67	6.07	2410	2886	4.0	1	ı	15.10	244,03	228.93
	MW-B	8/20/2002	0.59	200+	25.4	6.22	8.25	1036	951	2.4	!	·	4.68	230.68	228.00
	MW-9	8/20/2002	4.98	25	21.6	4.53	57.6	52.8	67.2	9'0	I	ī	8.24	226.00	217.76
	MW.10	8/20/2002	3.30	8	24.8	4.97	5,50	71.9	83.0	0.0	1	1	. 14.22	243.68	229.46
	MW-11	8/20/2002	3.70	35	21.5	6.70	5.29	115.4	119.0	6.3	1	!	23.80	256.77	232.97
	MW-12	8/20/2002	3.44	Ş	26.5	5.52	6.07	92.0	75.3	0.2	1	!	10.02	240.50	230.48
	MW-13	8/20/2002	3.50	\$	25.1	5.44	5.89	77.8	102.1	2.0	ı	1	3.04	229,74	226.70
	MW-14	6/20/2002	70	40	21.8	5.08	8 08	54.5	0.88	2.5	1	I	7.80	231,44	223.54
	MW-15	8/Z0/2002	3.70	06	25.8	6.43	90'9	97.6	81.3	0.2	ļ	ı	18.76	225.96	207.20
	MW-16	8/20/2002	2.19	40	21.2	6.62	6.92	128,4	159.1	0.0	1	ı	5.23	210.30	205.07
	MW-17	6/20/2002	2.14	33	22.5	7.50	6.46	76.2	162.7	0.0	ı		8.56	222.85	214.29
	MW-18D	8/20/2002	1.87	20	27.4	6.66	6.36	275.1	133.7	0.2	i	I	36.89	246.81	208.92
Notes:	१८ छ ४	mg/l = miligrams per liter. Elevations are referenced to an assum Groundwater depths were measured it Groundwater fevels measured 8/20/02	mg/l = miligrams per liter. Elevations are referenced to an assumed site datum (See Figure 2). Groundwalter depths were measured from the top of the PVC riser pipe. Groundwalter fevels measured &/20/02.	n (See Figure 2). I the PVC riser pipe.			5. Dissolved oxygen, and temperature n 6. MW-2 contained r 7. Groundwater eleva 8. NT=Not Tested	Oissolved oxygen, dissolved carbon dioxide, indial and emperature measurements obtained 34 1992. MWV. Contiented measurable amount of free phase Groundwater elevation for MWV. as corrected for NT-Not Tested	Dissolved oxygen, dissolved carbon doxide, initial pH, Initial conductivity, and temperature measurements obtained 3/1902. MW.2 confiniend measurable amount of free phase petroleum product. Contembrater elevation for MW.2 was corrected for free product based up NT=No1 Tested.	Obsolved oxygen, dissolved carbon doxide, initial pH, initial conductivity, and temperature measurements obtained 51/1902. MW-2 confiniend measurable amount of free phase petroleum product. Groundwater elevation for MW-2 was corrected for free product based upon a specific gravity for fuel of 0.88. NT=Not Tested	ic gravity for fuel of 0.85.				

SCDHEC IFB-37166-11/5/09-EMW Page: 102

1

,		Detection Limits	ix B for Laboratory ted	5. See Append 6. NT=Not Test		re Limits	Practical Quantitativims per liter	1. BDL = Below I 2. µg/l = microgra 3. mg/l = milligrau	Notes:
BDL.	BDL	BDL	BOL	BDL	BDL	BDL	HOB	07/25/02	SW-2
_	BDF	BOL	BDL	BDL	BDL	BDL	BOL	07/25/02	SW-1
BDL 0	BDL	BOL	BDL	BDL	BDL	BDL	BDL	08/20/02	MW-18D
BDL 0	BOL	BDL	BDL	BDL	BDiL	BDL	BDí.	08/20/02	MW-17
BDL	BDt.	BDL	BDL	BDL	BDL	BDL	BDL	08/20/02	MW-16
BDL 0	BDL	BDL	BDL	BOL	BDL	BDL	BDL	08/20/02	MW-15
BDL . 1	BDI.	TG8	BDL	BDL	BDL	BDL	BDL	08/20/02	MW-14
BDL G	BDL	BOL	BDL	BDL	BDL	BDL	BDL	08/20/02	MW-13
BO!	BOL	HOB	BOL	BDL	108	BDL	BDL	08/20/02	WW-12
S . Ide	BDL	BDL	80L	BDE	BOL	BDL	BDL	08/20/02	MW-11
190T BOT	TOB	BDL	BDL	BDL	BOL	BDL	BDL	08/20/02	MW-10
BDL 1	BDL	BDL	BDL	BDL	BDL	BDL	BDL	08/20/02	WW-9
1.30 BI	BDL	261	186.00	7.49	4.03	3.48	171	08/20/02	MW-8
48.3 Bf	0.11	7.78	1,105.8	131.2	107	72.6	795	08/20/02	MW-7
51.2 BI	9	1.99	992'9	3,330	626	1,710	1,100	08/20/02	MW-6
BDf 0	BDL	BDL	57.40	12.99	1.41	17.3	25.7	08/20/02	MW-5
BDL 0	108	BOL	BDL	BDL	BDL	BOL	BOL	08/20/02	MW-4
715 0.	22	416	27,130	7,570	1,470	12,500	5,590	08/20/02	MW-3
1,150 N	380	408	92,260	17,670	3,190	41,300	30,100	08/20/02	MW-2
	ROL	BDL	3.08	1.82	BDL	BOL	1.26	08/20/02	MW-1R
BDL O	EDB (µg/l)	MTBE (µg/l)	Total BTEX (µg/l)	Total Xylenes {µg/l}	Ethylbenzene (µg/l)	Toluene (µg/l)	Benzene (µg/l)	Sample Date	Well Number
		801 801 380 1,150 70 715 601 801 801 801	801 801 380 1,150 70 715 601 801 801 801	801 801 380 1,150 70 715 601 801 801 801	1,82 3.08 BDL BDL BDL 17,570 92,260 408 380 1,150 7,570 22,260 408 380 1,150 8DL 27,130 416 70 715 8DL BDL BDL BDL BDL 12.99 57,40 BDL BDL BDL 13.30 6,766 1.99 10 51.2 13.12 1,105.8 BDL BDL BDL BDL 13.12 1,105.8 B7.7 0.11 48.3 7.49 166.00 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL <td>1,82 3.08 BDL BDL BDL 17,670 22,260 408 380 1,150 17,670 27,130 418 70 715 BDL BDL BDL BDL BDL 12,99 57,40 BDL BDL BDL 13,130 6,766 1,99 10 712 13,132 1,105,8 8DL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL</td> <td>DL BDL 1.82 3.08 BDL BDL<td>DL BDL 1.82 3.08 BDL BDL<td>68.20022 1,26 BDL BDL 182 3.96 HDL BDL 1,470 7,570 27,130 446 380 1,156 0820022 5,580 1,250 1,470 7,570 27,130 446 70 715 0820022 50.L 60.L 60.L</td></td></td>	1,82 3.08 BDL BDL BDL 17,670 22,260 408 380 1,150 17,670 27,130 418 70 715 BDL BDL BDL BDL BDL 12,99 57,40 BDL BDL BDL 13,130 6,766 1,99 10 712 13,132 1,105,8 8DL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	DL BDL 1.82 3.08 BDL BDL <td>DL BDL 1.82 3.08 BDL BDL<td>68.20022 1,26 BDL BDL 182 3.96 HDL BDL 1,470 7,570 27,130 446 380 1,156 0820022 5,580 1,250 1,470 7,570 27,130 446 70 715 0820022 50.L 60.L 60.L</td></td>	DL BDL 1.82 3.08 BDL BDL <td>68.20022 1,26 BDL BDL 182 3.96 HDL BDL 1,470 7,570 27,130 446 380 1,156 0820022 5,580 1,250 1,470 7,570 27,130 446 70 715 0820022 50.L 60.L 60.L</td>	68.20022 1,26 BDL BDL 182 3.96 HDL BDL 1,470 7,570 27,130 446 380 1,156 0820022 5,580 1,250 1,470 7,570 27,130 446 70 715 0820022 50.L 60.L 60.L

S Such

 α

IFB-37166-11/5/09-EMW

	1	1	1	_	:	_		-	_	_	-	_	1	\top	_	-	_	·F	_			1	1	1	Т	_	_	7	Т		Т	T	Ţ	1	Т	ī	1	Ţ	_	٦
	Result	B0L	80	BDL	0.03	0.13	DRY HOLE	BOL	0.14	HOF	BDL	DKY HOLE	0.54	0.02	BOL	BOL	DKY HOLE	DRY HOLE	DRY HOLE	DKY HOLE	0.03	BOL	BUL	0.03	HOL	DRY HOLE	DEY HOLE	URY HOLE	00.5		JONE DE LE			and	30	200 700	7000	UKT TNULL	0.00	70.0
	Depth (feet)	23-27	24-28	24-28	24-28	24-28	5-9 PR	25-29	25-29	29-33	25-29	25-29	11-15	11-15	11-15	11-15	14-18 PR	16-20 PR	20-24	25-29	26-30	29-33	29-33	16-20	29-33	2-6 PR	2-6 PK	26-30	24-28	00-07	2 0	67	07	07 8	07	07	07	07	7.7	۲ ۲
	Вапр 1 е ID	GPW-102	GPW-103	GPW-104	GPW-105	GPW-106	CPW-107	GPW-108	GPW-109	GPW-110	GPW-111	GPW-112	GPW-113	GPW-114	GPW-115	GPW-116	GPW-117	GPW-118	GPW-119	GPW-119A	GPW-120	GPW-120A	GPW-121	GPW-122	GPW-123	GPW-124	GPW-124A	GPW-125	GPW-126	12/ 200	1 - AM	Z	S-JWI	TWP-4	C-1%	1WP-6	/ - dM-	χ-1≪-1	6-JML	TWP-10
	Result	1.05	90.0	BOL	aDL_	BDL	BDL	BDL	BDL	BDL	BDL	DRY HOLE	BOL	BOL	BDL	BOL	BDL	901			- 1	DRY HOLE	BDL	BDL	0.11	BDL	BDL	BDL	BOL	HOL	HOL	0.18	3.55	100	IGE	HDL	DRY HOLE	BDL	DRY HOLE	BDL
seults	Depth (Test)	24-28	20-24	20-24	20-24	21-25	24-28	24-28	25-29	21-25	21-25	21-25	23-27	22-26	24-28	23-27	21-25	16-20	11-15	8-12	11-15	9-13	11-15	11-15	11-15	11-15	11-15	11-15	11-15	11-15	11-15	20-24	25-29	30-34	35-39	40-44	24-28	26-30	24-28	20-24
Immunoassay Screening Results	Sample ID	GPW-67	CPW-68	69-₩49	GPW-70	GPW-71	GPW-72	GPW-73	CPW-74	GPW-75	CPW-76	CPW-77	GPW-77A	GPW-78	GPW-79	CPW-80	GPW-81	GPW-82	GPW-83	GPW-84	GPW-84A	GPW-85	GPW-85A	CPW-86	GPW-87	CPW-88	GPW-89	GPW-90	GPW-91	GPW-92	CPW-93	CPW-94	GPW-95	GPW-96	CPW-97	CPW-98	6PW-99	GPW-99A	GPW-100	GPW-101
oassay So	Result .	108	DRY HOLE	0.04	0.24	0.80	DRY HOLE	DRY HOLE	DRY HOLE	2.39	3.88	4.82	DRY HOLE	3.70	DRY HOLE	DRY HOLE	DRY HOLE	DRY HOLE	BOL	BDL	0.10	0.03	BDL	1,46	2.03	1.57	0.54	0.13	BDL	0.98	1,32	BDL	1.94	2.76	0.48	DRY HOLE	BOL	DRY HOLE	. BDL	BDL
	Depth (feet)	20-24	20-24	21-25	20-24	20-24	20-24	21-25	22-26	26-30	20-24	20-24	20-24	21-25	21-25	26-30	20-24	26-30	28-32	27-31	20-24	20-24	21-25	20-24	19-23	18-22	19-23	19-23	20-24	21-25	21-25	21-25	21-25	21-25	21-25	21-25	23-27	20-24	22-26	23-27
	Sample ID	SPW-76	GPW-37	GPW-37A	GPW-38	CPW-39	GPW-40	GPW-40A	GPW-41	GPW-41A	GPW-42	GPW-43	GPW-44	GPW-44A	_	-	1_	_	GPW-47	GPW-48	GPW-49	GPW-50	GPW-51	GPW-52	GPW-53	GPW-54	CPW-55	GPW-56	GPW-57	GPW-58	GPW-59	GPW60	GPW-61	GPW-62	GPW-63	GPW-64	GPW-64A	GPW-65	GPW-65A	GPW-66
	Result	1 94	0.31	5	0.13	0.00	0.03	0.41	0.38	0.20	0.08	DRY HOLE	BOL	0.03	0.13	0.04	DRY HOLF	2.06	3.03	0.02	108	60.0	BOL	DRY HOLF	1.02	0.05	5.83	3.16	2.09	0.05	Jabr.	BDL	DRY HOLE	0.02	0.30	0.04	DRY HOLE	BDL	0.62	BDL
	Depth (feet)	20-24	25-29	30-34	35-39	40-44	45-49	21-25	21-25	48-52 PR	21-25	22-26	26-30	24-28	21-25	21-25	6-10 PR	21-25	21-25	21-25	21-25	21-25	21-25	20-24	21-25	20-24	20-24	20-24	20-24	20-24	20-24	20-24	20-24	21-25	20-24	20-24	20-24	21-25	20-24	20-24
	Sample ID	GPW-1	GPW-2	GPW-3	GPW-4	C PW-5	GPW-6	GPW-7	GPW-8	CPW-9	GPW-10	GPW-11	GPW-11A	GPW-12	GPW-13	GPW-14	GPW-15	GPW-16	GPW-17	GPW-18	GPW-19	GPW-20	GPW-21	GPW-22	GPW-22A	GPW-23	GPW-24	GPW-25	GPW-26	GPW-27	GPW-28	GPW-29	GPW-30	GPW-30A	GPW~31	GPW-32	GPW-33	GPW-33A	GPW-34	GPW-35

Notes: Samples Collected on July 8 through July 30, .2002 PR = Probe Refusa:

Field Screening Test Results

Former SCDOT Columbia Maintenance Facility Columbia, South Carolina SCDHEC Site ID @1359

Midlands Environme

SCDHEC IFB-37166-11/5/09-EMW Page: 110 Consultar

	SUMMARY	of SLUG TES	ST (page 1	of 2)
	S Department of Health	OUTH CARC		ntrol (DHEC)
Site Data				
SITE ID#	07359	COUNTY		Richland
FACILITY NAME	Former SCDOT M	laintenance f	-acility	<u> </u>
SLUG DATA				
See Appendix(w	Table vater level logs, etc.)(Complete	Figure e as appropria	ate).	for a list of all data measurements.
Water Level Rec (h Complete the foll	covery Data was measured by Hermit Data Logger, Manually voluming table for each well tested OMPLETE A SECOND SHEET	with Water Le	ORS Interfevel Indicate	or, etc.)(List Method)
Initial Rise/Drawd Radius of well ca Effective Radius Static Saturated	of Well (feet) Aquifer Thickness (feet)	MW-6 4 55 0.083 0.75 9.85	MW-7 4:40 0.083 0.75 9:90	MW-8 8.82 0.083 0.75 15.32
	creen (feet) Nater Column in Well (ft)	12 9.85	12 9.90	12 15.32
Calculations				
Calculated values Slug Test Conduc	Table aquifer calculations was s by well were as follows: cted in Well(s) number	Figure NAVFAC MW-6		for calculations MW-8
Hydraulic Conduc	ativity	2.51E-06	4.75E-04	1:55E-04 cm/sec
The aquifer isSE	EE SHEET 3	semi-confir	ned	water table (Check as Appropriate).
The estimated se 2.11E-04 cm percent for	epage velocity is 86 n/sec, a hydraulic gradient of Silty SAND soil.			n a hydraulic conductivity of porosity of 13
	SUMN	MARY of SLU	JG TEST	

	Groundwater S	eepage Velocit	y Calculatio	ons (page 2 of 2)	
	Department of	SOUTH CA Health and Env		Control (DHEC)	
Site Data	· · · · · · · · · · · · · · · · · · ·		,		
SITE ID#	07359	COUN	TY	Richland	_
FACILITY NAME		Former SCDO	T Maintenar	nce Facility	<u> </u>
Hydraulic Conducti	vity (average)				
Hydraulic Conductivi (MW-6,MW-7 &MW-	3)	.11E-04 cm/sec	;	,	
		15E-04 ft./min			
Groundwater Seepa	ige Velocity				
V = (Ki)/(Ne) (ft./day)		nter Values in Shade	d Areas Only		
	1	= Hydraulic Cond = Hydraulic Grad = Effective Perr	dient (ft./ft.)	day)	
K = = Ne =	5.98E-01 ft./ 5.14E-02 ft./	•			
V =	2.4E-01 ft./	day <u>86</u>	ft./year	The second secon	
					·
	Groundw	ater Seepage V	elocity Calc	culations	

Inflow for Condition A Well MW-6.xls

Inflow Permeability Calculation

Former SCDOT Columbia Maintenance Facility

MW-6

Test Performed:

8/20/02

Static:	15.15	ft		*Enter Values in	Shaded Area	as Only	
Time (min)	Depth	delta H	Ht/Ho	Information from d	ata and p	lot of Ht/H	o vs time
0.33	19,70	4.55	1.00	Bore Hole D	iameter:	8	in
0.41	19.68	4.53	1.00	Total Depth	of Well:	25:	ft
0.75	19.62	4.47	0.98	Stand Pip	oe Area:	50.27	in^2
1.00	19.60	4.45	0.98			0.35	ft^2
1.50	19.54	4.39	0.96	Coordinates fro	m Graph	for Slope (Calc:
2.00	19.50	4.35	0.96	Н	1/Ho:	0.86	
3.00	19.44	4.29	0.94	t1	;	20,00	min
5.00	19.34	4.19	0.92	H	2/Ho:	0.80	
7.00	19.27	4.12	0.91	t2	:	50.00	min
10.00	19.20	4.05	0.89			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
20.00	19.06	3.91	0.86				
30.00	18.95	3.80	0.84	H1:	3.91	H2:	3.64
40.00	18.85	3.70	0.81	t1:	20.00	t2:	50.00
50.00	18.77	3.62	0.80	Radius	R:	4.00	in
60.00	18,66	3.51	0.77	Radius	R:	0.33	ft
				Depth	D:	9.85	ft
					R/D:	0.034	
					D/R:	29.55	

Shape Factor Determination Value: 0.616599 *

*This value is used in conjunction with

Figure 13 of Reference [1] to obtain the shape factor.

Shape Factor

Coeff. of Permeability (K):

4.94E-06 ft/min

7.11E-03 ft/day

2.51E-06 cm/sec

Ref [1]: Naval Fac. Engr. Command, Design Manual 7.01, soil Mechanics, Condition A.

Page: 115

1144 Old Two Notch Road Lexington, South Carolina 29013 (803) 808-2043 fax: 808-2048

Inflow for Condition A Well MW-7.xls

IFB-37166-11/5/09-EMW

Page: 116

Inflow Permeability Calculation

Former SCDOT Columbia Maintenance Facility

Test Performed:

8/20/2002

\mathbf{M}	ΠXZ.	_7
10		-,

Type II (Uncased Well)

Static:	15.10	ft		*Enter Values in Shaded Areas Only	
Time (min)	Depth	delta H	Ht/Ho	Information from data and plot of Ht/Ho vs time	
0.50	19.50	4.40	1.00	Bore Hole Diameter: 8 in	
0.75	18.70	3.60	0.82	Total Depth of Well: 25 ft	
1.00	18.32	3.22	0.73	Stand Pipe Area: 50.27 in^2	
1.50	17.50	2.40	0.55	0.35 ft^2	
2.00	17.05	1.95	0.44	Coordinates from Graph for Slope Calc:	
2.50	16.36	1.26	0.29	H1/Ho: 0.82	
3.00	15.93	0.83	0.19	t1: 0.75 min	
4.00	15.72	0.62	0.14	H2/Ho: 0.29	
	. 4			t2: 2.50 min	
				H1: 3.61 H2: 1	.28
				t1: 0.75 t2: 2	2.50
				Radius R: 4.00 in	
			· · · · · · · · · · · · · · · · · · ·	Radius R: 0.33 ft	
	٠.			Depth D: 9.90 ft	
			-	R/D: 0.034	
	. '.			D/R: 29.70	

Shape Factor Determination Value: 0.753333 *

*This value is used in conjunction with

Figure 13 of Reference [1] to obtain the shape factor.

Shape Factor

S:

3.0

Coeff. of Permeability (K):

9.35E-04 ft/min

1.35E+00 ft/day

4.75E-04 cm/sec

Ref [1]: Naval Fac. Engr. Command, Design Manual 7.01, soil Mechanics, Condition A.

1144 Old Two Notch Road Lexington, South Carolina 29013 (803) 808-2043 fax: 808-2048

Inflow for Condition A Well MW-8.xls

SCDHEC IFB-37166-11/5/09-EMW

Page: 118

Inflow Permeability Calculation

Former SCDOT Columbia Maintenance Facility

Test Performed:

8/20/02

4.32

4.00

л '		

delta H

8.82

7.76

7.04

6.55

6.13

5.30

4.28

3.18

Ht/Ho

1.00

0.88

0.80

0.74

0.70

0.60

0.49

0.36

Static: 4.68 ft

Depth

13.50

12:44

11.72

11.23

10.81

9.98

8.96

7.86

Time (min)

0.50

1.00

1.50

2.00

2.50

3.00

4.00

5.00

Type II (Uncased Well)

*Enter Values in Shaded Areas Only

Information from data and plot of Ht/Ho vs to	ime
Bore Hole Diameter: 8 in	
Total Depth of Well: 20 ft	•

Stand Pipe Area: 50.27 in^2 0.35 ft^2

Coordinates from Graph for Slope Calc:

H1/Ho:	0.74
t1:	2.00 min
H2/Ho:	0.49

t2:

H1: 6.53 H2: t1: 2.00 t2:

4.00 min

Radius R: 4.00 in Radius R: 0.33 ft

Depth D: 15.32 ft R/D: 0.022

D/R: 45.96

Shape Factor Determination Value: 0.645933 *

*This value is used in conjunction with

Figure 13 of Reference [1] to obtain the shape factor.

Shape Factor

S: 4.9

Coeff. of Permeability (K):

3.06E-04 ft/min

4.41E-01 ft/day

1.55E-04 cm/sec

Ref [1]: Naval Fac. Engr. Command, Design Manual 7.01, soil Mechanics, Condition A.

IFB-37166-11/5/09-EMW Page: 119

1144 Old Two Notch Road Lexington, South Carolina 29/013 (8/03) 8/08-2/043 Fax: 8/08-2/048

0.01' (post-AFVR) 0.01' (post-AFVR)

(AFVR) (AFVR) (AFVR) (AFVR) (AFVR)

0.02' 0.02' 0.03' 0.02' 0.21' No FP

Nov-04 Feb-06 4/26/2006 9/3/2006 10/14/2006 8/18/2008

MW-1	08/21/00	8/20/2002	9/25/2003	4/20/2004	1/25/2005	7/27/2005	10/19/2005	7/10/2006
Benzene	Not	1.26	34	5.2	3.2	6.1	3.6	1.9
Toluene	Sampled	BDL	10	<5	\$	\$	ş	\$
Ethylbenzene		BDL	<5	<5	<5	\$	Ą	\$
Xylene		1.82	<13.8	<15	<15	<15	<15	<15
Naphthalene		BDL	4.5	14	18	9.3	16	13
MIBE		BDL	<5	\$	₽	\$	\$	\$
EDB		BDL	<0.02		<0.02		<0.02	<0.02
Lead		BOL	11					
1,2 DCA					\$			\$
TAME						مران مران		ح10
TAA						15		~ 10
EtBA						×10		<10
TBF						² 20		4 20
DIPE						\$		\$
ethanol						<20 <20		<20
EtBE						<10		×10
TBA						د 10		<10
Nitrate		200				-		
Sulfate		10000						
Ferrous Iron		SN						

Historical CoC Concentrations
UST Permit # 07359
Facility Name Columbia Maintenance Facility

MW-2	08/21/00	8/20/2002	9/25/2003	4/20/2004	1/25/2005	7/27/2005	10/19/2005	7/10/2006	
Benzene	Not	30100	Not	Not	3100	2100	Ş	Ş	MW-2
Toluene	Sampled	41300	Sampled	Sampled	10000	6700	sampled	sampled	
Ethylbenzene	0.96° FP	3190	2.15' FP	0.05' FP	780	510	0.02' FP	0.01' FP	
Xylene		17670			4300	2800			
Naphthalene		1150			380	<500			
MIBE		408			<50	<500			MW-2R
EDB		380			61				
1,2 DCA					<50				
TAME						<1000			
TAA						1400			
EtBA						<1000		i	
TBF						<2000			
DIPE						\$500 \$			
ethanoi			-			<2000			
EtBE				,		<1000			
TBA						<500			
Lead		SN							
Nitrate		NS							
Sulfate		NS		:					
Ferrous Iron		SN							

SCDHEC IFB-37166-11/5/09-EMW Page: 121

MW-3	08/21/00	8/20/2002	9/25/2003	4/20/2004	1/25/2005	7/27/2005	10/19/2005	7/10/20
Benzene	7475	5590	3900	7600	7000	1400	2600	2300
Toluene	94	12500	16000	24000	25000	5400	16000	10000
Ethylbenzene	1024	1470	1900	2200	1300	780	1200	920
Xylene	1773	7570	11000	11600	1390	2900	8500	9200
Naphthalene	<1	715	089	069	1700	570	750	770
MtBE	540	416	<5	<250	<1000	<250	<250	\$200 \$200
ED8	NS	70	19		06		170	52
Lead	25	54	110					
1,2 DCA					<1000			\$200 \$200
TAME						<500	<500	21000
TAA						1200	3400	1700
EtBA						<500	<500	<1000
TBF						<1000	<1000	<2000
DIPE						<250	<250	<200
ethanol						<1000	<1000	<2000
EtBE						<500	<500	<1000
TBA						<500	<500	×1000
Nitrate	170	009						
Sulfate	2,730	2000						
Ferrous Iron	2500	SN						

MW-4	08/21/00	8/20/2002	9/25/2003	4/20/2004	1/25/2005	7/27/2005	10/19/2005	7/10/2006
Benzene	3.21	708	<5	<5	\$	\$	Ş	Ş
Toluene	5.98	108	\$	Ą	\$	\$	ŝ	\$
Ethylbenzene	1 >	108	\$>	₹2	\$	\$	Ą	\$
Xylene	1.5	708	<15	<15	<15	<15	<15	<15
Naphthalene	24	108	38	\$	\$	Ą	₽	\$
MtBE	<1	108	\$	Ą	\$	\$	\$	\$
EDB	NS	_1 0 8	<0.02		<0.02		<0.02	<0.02
Lead	28	108	<2.2					
1,2 DCA					\$			\$
TAME						410		×10
TAA						~ 10		×10
EtBA						410 دا0		×10
TBF						² 20		<20 <20
DIPE						\$		\$
ethanol						<20		8
EtBE						<10		⊶
TBA						<10		ر
Nitrate	1030	009						
Sulfate	2,290	2000						
Ferrous Iron	1,300	SN						

WW-5	08/21/00	8/20/2002	9/25/2003	4/20/2004	1/25/2005	7/27/2005	10/19/2005	7/10/200
Benzene	2.42	25.7	46	30	25	25	33	40
Toluene	3.37	17.3	11	\$	\$	4.7	2.8	\$
Ethylbenzene	۲ ۰	1.41	1.7	<5	\$>	1.7	\$	Ş
Xylene	~	12.99	31.5	13.3	12.4	04	22.5	25.2
Naphthalene	۷1	BDL	44	3.8.	\$	\$	\$	Å
MtBE	<1	BDL	<5	\$	₽	\$	\$	\$
EDB	NS	BDL	<0.02		<0.02		<0.02	<0.02
Lead	_ <2	BDL	\$					
1,2 DCA			-		ŝ			Ą
TAME						ot>	<10	₽
TAA						530	290	720
EtBA						<10	Q¥0	×10
TBF						<20	420 420	\$5 \$7
DIPE						Ą	Ą	₽
ethanol						<20	\$ \$	\$ \$
EtBE						<10	×10	₽
TBA						<u>د</u> 10	~10 ~10	5
Nitrate	1,190	800						
Sulfate	4,640	2000			;			
Ferrous Iron	<30	NS						

MW-6	08/21/00	8/20/2002	9/25/2003	4/20/2004	1/25/2005	7/27/2005	10/19/2005	7/10/2006
Benzene	ou	1100	940	066	710	470	400	300
Toluene	well	1710	1100	1100	830	200	350	84
Ethylbenzene		626	640	670	280	570	380	380
Xylene		3330	3200	2790	2060	1720	1030	780
Naphthalene		51.2	200	160	380	240	200	250
MtBE		1.99	Ą	425	<50	<25	<25	\$
EDB.		10	3.2		3.4		1	0.19
-ead		BDL	6					
1,2 DCA					<50			\$
TAME						<50	<50	×10
ĀĀ						1000	810	930
EtBA						~ 50	\$5 \$5	×10
IBF						×100	×100	<20
JIPE						<25	<25	\$
ethanol						×100	<100	<20 <20
EBE						\$20 \$20	\$	410
ΓBA						\$50	05 050	31
Vitrate		BDL						
Sulfate		2000						
Ferrous Iron		NS						

SCDHEC IFB-37166-11/5/09-EMW Page: 123

or well e	MW-7	08/21/00	8/20/2002	9/25/2003	4/20/2004	1/25/2005	7/27/2005	10/19/2005	7/10/2006
ne well 72.6 5700 2000 5100 2900 Penzene 107 540 520 830 560 e 131.2 2600 1690 3000 1780 halene 48.3 <500	Benzene	ou	795	6100	3800	0099	4700	1900	130
benzene 107 540 520 830 560 Feb Feb Feb Feb Feb Feb Feb Feb Feb Feb	Toluene	well	72.6	5700	2000	5100	2900	840	6.6
the teat of the te	Ethylbenzene		107	540	520	830	560	220	16
thalene 48.3 <500 170 650 180 87.7 250 360 300 250 CA 73 <250	Xylene		131.2	2600	1690	3000	1780	929	22.1
SA 87.7 250 360 300 250 CA 73 0.23 250 CA 73 <250	Naphthalene		48.3	<500	170	650	180	78	10
CA 0.11 0.055 0.23	MtBE		87.7	250	360	300	250	95	28
CA 73 < 250 < 500 < 500 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700 < 700	ED8		0.11	0.055		0.23		<0.02	<0.02
CA <250 <500 <500 <500 <500 <500 <500 <500	Lead		26	73					
Section Sect	1,2 DCA					<250			\$
2) 4700 4700 4500 4500 4500 4500 4500 4500	TAME						<500	210	×10
Columbia Columbia	TAA						4700	3300	089
1400 1400 1500	EtBA						<200	<10	×10
300 300 (100	TBF	1					<1000	<20	420
1400 1400 1500	DIPE						300	110	40
8 BDL 620 8 1400 NS	ethanol						<1000	<20	~ 2 0
8DL 620	EtBE						<200	~1 0	<10
Lion	TBA						620	270	28
Iron	Nitrate		BDL						
	Sulfate		1400						
	Ferrous Iron		NS						

MW-8	08/21/00	8/20/2002	9/25/2003	4/19/2004	1/25/2005	7/27/2005	10/19/2005	7/10/2006
Benzene	on .	121	S>	30	Ş	<5	\$>	\$
Toluene	well	3.48	G>	\$	\$	\$	Ş	\$
Ethylbenzene		4.03	\$>	\$	\$	\$	\$	\$
Xylene		7.49	<15	<15	<15	<15	<15	<15
Naphthalene		1.3	Ą	₽	6.4	\$	Ş	\$
MtBE		261	53	81	78	9.5	28	9.7
EDB		BDL	<0.02		<0.02		<0.02	<0.02
Lead		200	2600					
1,2 DCA					\$			\$
TAME						<10	<10	<10
TAA						100	430	180
EtBA						×10	<10	×10
TBF						<20	\$ \$	<20 <20
DIPE						9.4	24	8.9
ethanol						<20	8	420
EtBE						<10	~10 ~10	~10
TBA						15	85	29
Nitrate		BDL						
Suifate		1900						
Ferrous fron		NS						

SCDHEC IFB-37166-11/5/09-EMW Page: 124

MW-9	08/21/00	8/20/2002	9/25/2003	4/19/2004	1/25/2005	7/27/2005	10/19/2005	7/10/2006
Benzene	02	BDL	<5	<5	<5	\$>	\$	\$
Toluene	well	BDL	<5	<5	\$	\$5	\$	\$
Ethylbenzene		BDL	<5	<5	<\$	\$5	\$	\$
(ylene		BDL	<15	<15	<15	<15	<15	<15
Naphthalene		BDL	4.3	8	\$	\$	\$	\$
MIBE		BDL	<5	<5	Ş	₽	\$	\$
EDB		BDL	<0.02		<0.02		<0.02	<0.02
-ead		BDL	22					
1,2 DCA					\$			\$
TAME						40		×10
TAA						40		×10
tBA						410		<10
TBF			,			85		<20
DIPE						\$		\$
ethanol						~20		<20
EtBE						40		<10
TBA						×10		<10
Xylene								
Nitrate		1000						
Sulfate		2000						
Ferrous Iron		SN						

MW-10	08/21/00	8/20/2002	9/25/2003	4/19/2004	1/25/2005	7/27/2005	10/19/2005	7/10/2006
Benzene	no	TOB	\$	\$	\$>	\$	\$	\$
Toluene	well	708	\$>	\$	\$	\$	₽	\$
Ethylbenzene		TOB	\$>	\$	\$	Ą	\$	\$
Xylene		708	<15	<15	<15	<15	<15	<15
Naphthalene		108	\$	3.13	\$	\$	Ą	₩
WtBE		108	₽	\$	\$	ŝ	₩	\€
ED8		BDL	<0.02		<0.02		<0.02	<0.02
Lead		BDL	9.7					
1,2 DCA					<5			\$
FAME						×10		×10
FAA						01×		×10
EtBA						0 1 2		<10 <10
rBF						<20		<20 <20
JIPE						\$		\$
ethanol						² 20		<20
EtBE						د10 د10		<10
rBA						ot >		<10
Vitrate		BDL						
Sulfate		10000						
Ferrous Iron		SN						

	MW-11	08/21/00	8/20/2002	9/25/2003	4/19/2004	1/25/2005	7/27/2005	10/19/2005	7/10/2006
well BDL <5 sampled sampled <5 inaccess. <5 inaccess. <5 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	Benzene	no	BDL	\$>	not	not	\$	Ą	Ş
BDL <5 inaccess. <6 85 65 65 65 65 65 65 6	Toluene	well	BDL	\$>	sampled	sampled	₽	\$	\$
BDL <15 <15 <15 <15 <15 <15 <15 <15 <15 <15	Ethylbenzene		BDL	G>	inaccess.		\$	\$	\$
BDL <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5	Xylene		BDL	<15			<15	<15	<15
BDL <0.02 BDL <0.02 BDL 5.1 BDL 5.1 C10 C10 C10 C10 C20 C20 C20 C2	Naphthalene		BDL	\$			\$	\$	Ş
BDL <0.02 Color MtBE		BDL	<5			\$	\$	\$	
BDL 5.1	EDB		BDL	<0.02				<0.02	<0.02
5200 5200 5000	Lead		BDL	5.1					
5200 5200 5000	1,2 DCA								Ş
5200 5000 5000	TAME						<10		<10
5200 5000 NS	TAA						×10		<10
5200 5000 NS	EtBA						<10		<10
5200 5000 NS	TBF						<20		~ 20
5200 5200 5000	DIPE						\$		ς,
5200 5200 5000	ethanol						05°		420
5200 5000 5000	EtBE						0.5 4.0		410
	TBA						<u>۱</u>		×10
	Nitrate		5200						
	Sulfate		2000						
	Ferrous Iron		NS						

MW-12	08/21/00	8/20/2002	9/25/2003	4/19/2004	1/25/2005	7/27/2005	10/19/2005	7/10/2006
Benzene	оu	BDL	<5	\$	<5	\$	ş	Ş
Toluene	well	BDL	<5	\$	\$	\$	\$	\$
Ethylbenzene		BDL	<5	<5	\$	₽	\$	\$
Xylene		BDL	<15	<15	<15	<15	<15	<15
Naphthalene		BOL	<5	<5	<5	\$	\$	\$
MtBE		BOL	<5	~	\$	Ą	Ş	\$
EDB		BDL	<0.02		<0.02		<0.02	<0.02
Lead		BDL	18					
1,2 DCA					\$			Ą
TAME						×10		<10
TAA						×10		√10 √10
EtBA						√10 10		<10
TBF						² 20		<20
DIPE						\$		\$
ethanol						\$20 \$20		<20
EtBE						<10		×10
TBA						40		×10
Nitrate		1300						
Sulfate		0009						
Ferrous Iron		SN						

	00/17/00	8/20/2002	9/25/2003	4/19/2004	1/25/2005	7/27/2005	10/19/2005	7/10/2006
	no Or	BDL	\$	<5	<5	\$	\$	\$
Innerie	well	BDL	<5	<5	<5	\$	ςŞ	\$
Ethylbenzene		BDL	<5	<5	<5	Ą	Ý	\$
Xylene		BDL	<15	<15	<15	<15	<15	<15
Naphthalene		BDL	<5	₹	<2	\$	Ą	\$
MtBE		BDL	<5	<5	<5	ŝ	₽	14
ED8		BDL	<0.02		<0.02		<0.02	<0.02
Lead		BDL	33					
1,2 DCA					\$			\$
TAME						<10		~10
TAA						<10		280
EtBA						<10		<10
TBF						<20		420
DIPE						<5		13
ethanol						<20		\$ \$
EtBE						<10		<10
TBA		-				<10		37
Nitrate		006						
Sulfate		0009						
Ferrous Iron		NS						

MW-14	08/21/00	8/20/2002	9/25/2003	4/19/2004	1/25/2005	7/27/2005	10/19/2005	7/10/2006
Benzene	2	108	\$	\$>	<5	<5	\$	ફ
Toluene	well	BDL	\$	\$	\$	\$	\$	ç
Ethylbenzene		BDL	\$	<5	\$	\$	\$	\$
Xylene		BDL	<15	<15	<15	<15	<15	<15
Naphthalene		BDL	<5	\$	\$	\$	Ş	\$
MtBE		BDL	\$	\$	\$>	\$	\$	\$
EDB		BDL	<0.02		<0.02		<0.02	<0.02
Lead		BDL	8.5					
1,2 DCA					\$			\$
TAME						0 , √		<10
TAA						√ 10		×10
EtBA						×10		×10
TBF						625		<20 <20
DIPE						Ş		\$
ethanol						² 20		~ 50
EtBE						0. V		<10
TBA						0. V		<10
Nitrate		1700						
Sulfate		10000						
Ferrous Iron		SN						

Benzene	08/21/00	8/20/2002	9/25/2003	4/19/2004	1/25/2005	7/27/2005	10/19/2005	7/10/20
	00	BOL	<5	\$>	\$	<5	\$>	\$
Toluene	well	BOL	<5	\$>	<5	\$	\$	\$
Ethylbenzene		BDL	<5	\$ >	<5	Ş	\$	₽
Xylene		BDL	<15	<15	<15	<15	<15	<15
Naphthalene		BDL	<5	\$>	\$	\$	\$	Ą
MtBE		BDL	<5	\$>	<5	\$	\$	₽
EDB		BDL	<0.02		<0.02		<0.02	<0.02
Lead		BÖL	3.1					
1,2 DCA					Ş			₽
TAME						410		410
TAA						×10		×10
EtBA						<u>داه</u>		ot>
TBF						\$ \$		\$ \$
DIPE		-				ŝ		٨
ethanol						<20		\$ \$
EtBE						<10		₽
TBA						<10		₹
Nitrate		100						
Sulfate		0009						
Ferrous Iron		NS						

OI AAA	08/21/00	8/20/2002	9/25/2003	4/19/2004	1/25/2005	7/27/2005	10/19/2005	7/10/2006
3enzene	OL OL	BDL	<5	\$	\$	\$	<5	\$
Foluene	well	BDL	<5	\$	2.4	\$	\$ >	\$
thylbenzene		BDL	\$>	\$	\$	₽	\$	\$
(ylene		BDL	<15	<15	<15	<15	<15	<15
laphthalene		BDL	<5	\$	Ą	\$	\$	\$
AtBE		BDL	<5	\$	ŝ	Ş	\$	\$
:DB		BDL	<0.02		<0.02		<0.02	<0.02
ead		BDL	11					
,2 DCA		,			₽			\$
AME						ر د10		<10
ΓAΑ						ot>		<10
EtBA						<10 <10		<10
rbF						<20		<20 <20
JIPE						\$		\$
ethanol						\$ \$		<20
EtBE						<10		<10
rba TBA						~ 10		<10
litrate		700						
Sulfate		8000						
Ferrous Iron		SN						

MW-17	08/21/00	8/20/2002	9/25/2003	4/19/2004	1/25/2005	7/27/2005	10/19/2005	7/10/2006
Benzene	ou	BOL	<5	\$	23	\$	\$	~
Toluene	well	BDL	<5	<5	\$	\$	\$	\$
Ethylbenzene		BDL	<5	<5	<5	\$	\$	\$
Xylene		BDL	<15	<15	<15	<15	<15	<15
Naphthalene		BDL	<5	<5	<5	\$	Ą	\$
MtBE		BDL	<5	<5	<5	<5	Ą	₽
ED8		BDL	0.027		0.067		<0.02	<0.02
Lead		BDL	26					
11,2 DCA					2.5J			\$
TAME						<10		کا
TAA						<10		<10
EtBA						<10		410
TBF						<20		\$ \$
DIPE						<5		Ą.
ethanol						<20		² 20
EfBE						<10		<10
ТВА						<10		<10
Nitrate		800						
Sulfate		0009						
Ferrous Iron		NS						

MW-18D	08/21/00	8/20/2002	9/25/2003	4/19/2004	1/25/2005	7/27/2005	10/19/2005	7/10/2006
Benzene	Ou	BDL	\$	\$	18	\$	ş	₽
Toluene	well	BDL	\$>	Ą	5.2	Ş	\$	\$
Ethylbenzene		BDL	\$>	\$	2.7	Ş	\$	\$
Xylene		BDL	<15	<15	12	<15	<15	×15
Naphthalene		BDL	\$>	Ą	Ą	\$	\$	5.1
WIBE		BDL	\$>	Ą	\$	Ş	\$	\$
EDB		BDL	<0.02		0.04		<0.02	<0.02
ead		BDL	47					
1,2 DCA					\$			<5 5
TAME						<10		<10 <10
FAA						۸ ۱ 0		<10
EtBA						<10		<10
TBF						<20		\$ \$
DIPE						\$		\$
ethanol						420 420		<20
EtBE						ot>		<10
TBA						<10		<10
Vitrate		300						
Sulfate		10000						
Ferrous Iron		SN						

SCDHEC 1FB-37166-11/5/09-EMW Page: 129

8/8/2008 0.39' 8/18/2008 0.33'

No	MW-19	08/21/00	8/20/2002	9/25/2003	4/19/2004 1/25/2005 7/27/2005 10/19/2005	1/25/2005	7/27/2005	10/19/2005	7/10/2006
well well	Benzene	OU	no	01	ou	OL.	2	51	9
Ethylbenzene Ethylbenzene Xyfene Common teach Mabe Common teach Lead Common teach 1.2 DCA Common teach TAME Common teach TAA Common teach EtBA Common teach TBA Common teach Nitrate Common teach Sulfrate Common teach Ferrous Iron Common teach	Toluene	well	well	well	well	well	well	well	well
Xylene Xylene Naphthalene 6 MtBE 6 EDB 6 Lead 7 1.2 DCA 7 TAME 7 TAA 6 EtBA 7 TBF 7 DIPE 7 ethanol 7 EtBE 7 TBA 7 Nitrate 8 Sulfate 7 Ferrous Iron 7	Ethylbenzene								
Maphthalene Mathematic Mitter Mathematic Lead 1,2 DCA TAME Mathematic TAA EtBA TBF Mathematic EtBE Mathematic Nitrate Mathematic Sulfate Mathematic Ferrous Iron Mathematic	Xylene								
MRBE MRBE EDB (1,2 DCA) 1,2 DCA (1,2 DCA) TAME (1,2 DCA) TAA (1,2 DCA) TAA (1,2 DCA) TAA (1,2 DCA) TAA (1,2 DCA) TBA (1,2 DCA) EtBA (1,2 DCA) EtBA (1,2 DCA) EtBB (1,2 DCA) EtBE (1,2 DCA) EtBE (1,2 DCA) EtBE (1,2 DCA) EtBE (1,2 DCA) ITBA (1,2 DCA) Nitrate (1,2 DCA) Sulfrate (1,2 DCA) Ferrous Iron (1,2 DCA)	Naphthalene								
EDB Lead 1,2 DCA TAME TAA EtBA TBF DIPE ethanol EtBE TBA Nitrate Sulfate Ferrous Iron	MtBE								
Lead Lead 1,2 DCA	EDB								
1,2 DCA 1,2 DCA TAME 6 TAA 6 EtBA 6 TBF 7 DIPE 6 ethanol 7 EtBE 7 TBA 7 Nitrate 7 Sulfate 7 Ferrous Iron 7	Lead								
TAME TAME TAA EtBA ETBF EtBA DIPE EtBE ethanol EtBE TBA Nitrate Sulfate EtBC Ferrous Iron EtBC	1,2 DCA								
TAA TAA EtBA	TAME								
EtBA EtBA TBF	TAA								
TBF	EtBA								
DIPE DIPE	TBF							!	
ethanol EtBE EtBE TBA Nitrate Sulfate Ferrous Iron	DIPE						•		
EtBE EtBA Nitrate Sulfate Ferrous Iron Sulfate	ethanol								
TBA Nitrate Sulfate Ferrous Iron	EtBE								
Nitrate Sufrate Ferrous Iron	TBA								
Sulfate Ferrous Iron	Nitrate								
Ferrous Iron	Sulfate								
	Ferrous Iron								

SW-1	08/21/00	8/20/2002	9/25/2003	4/19/2004	1/25/2005	7/27/2005	10/19/2005	7/10/2006
Benzene	not	BDL	not	not	3.7	\$	₽	₽
Toluene	sampled	708	sampled	sampled	\$	\$	Ş	\$
Ethylbenzene		BDL			\$	\$	\$	\$
Xylene		108			<15	<15	<15	<15
Naphthalene		BDL			\$	\$	\$	Ą
MtBE		BDL			<5	₽	\$	\$
EDB		108			<0.02		<0.02	<0.02
Lead		108						
1,2 DCA					\$,		\$
TAME						<10		<10
TAA						<10		×10
EtBA						<10		×10
TBF						420		<20
DIPE						ş		\$
ethanol						420		<20
EtBE						√ 10		<10
TBA						40		×10
Vitrate		SN						
Sulfate		SN						
Ferrous Iron		NS						

SW-2	08/21/00	8/20/2002	9/25/2003	4/19/2004		7/27/2005	1/25/2005 7/27/2005 10/19/2005	7/10/2008
Benzene	not	BDL	not	not		\$	\$5	222
Toluene	sampled	BDL	sampled	sampled	\$	₩.) \v	4
Ethylbenzene		BDL			\$. ₹	φ.)
Xyfene		BDL			<15	<15		<u>√15</u>
Naphthalene		TOB			\$	₩	\$	2 \$
MtBE		BDL			\$	\$	\$	₩
EDB		BDL			<0.02		<0.02	<0.02
Lead		BDL						
1,2 DCA					ŝ			<55
TAME						<10		×40
TAA						13		10
EtBA						S		210
TBF						025		200
DIPE						\$		\$
ethanol						<20		\$20
EtBE						40		0 V
TBA						د 10		Q.V
Nitrate		SN						2
Sulfate		SN						
Ferrous Iron		SN						

BDL- Below Detection Limit NS- Not Sampled

GROUNDWATER ANALYTICAL RESULTS COLUMBIA, SOUTH CAROLINA MECI PROJECT NUMBER 07-1122 COLUMBIA MAINTENANCE **SCDHEC ID NUMBER 07359** TABLE 1

Product Product Product Product Product 13,800 46,500 BDL 17,700 90,000 BDL 24,100 68,800 BDL 16,000 110,100 BDL 16,000 110,100 BDL DRY Product Product Product Product Product Product Product Product Product BDL 18,900 69,300 BDL 5,100 12,450 BDL	Well Number	Sample Date	Depth	Benzene (μg/l)	Toluene (µg/l)	Ethylbenzene (μg/l)	Total Xylenes (μg/l)	Total BTEX (µg/l)	MTBE (µg/l)	Naphthalene (µg/l)
1/17/2007 10-20 10,000 2,700 13,800 46,500 BDL 1/17/2007 10-20 19,000 20,000 3,300 17,700 90,000 BDL 1/17/2007 10-20 19,000 28,000 2,400 52,400 BDL 1/17/2007 10-20 13,000 27,000 4,700 24,100 68,800 BDL 1/17/2007 10-20 17,000 27,000 27,100 10,000 BDL BDL 1/17/2007 8-18 16,000 39,000 7,100 10,000 BDL BD	GPW-1	1/17/2007	10-20	Product	Product	Product	Product	Product	Product	Product
1/17/2007 10-20 19,000 3,300 17,700 90,000 BDL 1/17/2007 10-20 9,100 26,000 4,700 24,100 68,800 BDL 1/17/2007 10-20 13,000 27,000 4,700 24,100 68,800 BDL 1/17/2007 10-20 13,000 39,000 7,100 7,100 99,100 BDL 1/17/2007 8-18 16,000 31,000 13,000 110,000 110,100 BDL	GPW-2	1/17/2007	10-20	10,000	20,000	2,700	13,800	46,500	BDL	1,300
1/17/2007 10-20 9,100 26,000 4,700 24,100 68,800 BDL 1/17/2007 10-20 13,000 27,000 4,700 24,100 68,800 BDL 1/17/2007 10-20 Product Product Product Product Product 1/17/2007 8-18 16,000 39,000 7,100 37,000 99,100 BDL 1/17/2007 8-18 16,000 31,000 1,300 10,000 110,00 BDL BDL <td>GPW-3</td> <td>1/17/2007</td> <td>10-20</td> <th>19,000</th> <td>50,000</td> <td>3,300</td> <td>17,700</td> <td>90,006</td> <td>BDL</td> <td>2,100</td>	GPW-3	1/17/2007	10-20	19,000	50,000	3,300	17,700	90,006	BDL	2,100
11/17/2007 10-20 Froduct Froduct Product <	GPW-4	1/17/2007	10-20	9,100	26,000	2,800	14,500	52,400	BDL	1,100
11/17/2007 8-18 Product Product <t< td=""><td>GPW-5</td><td>1/17/2007</td><td>10-20</td><th>13,000</th><td>27,000</td><td>4,700</td><td>24,100</td><td>68,800</td><td>BDL</td><td>2,700</td></t<>	GPW-5	1/17/2007	10-20	13,000	27,000	4,700	24,100	68,800	BDL	2,700
1/17/2007 8-18 16,000 3,000 7,100 16,000 99,100 BDL 1/17/2007 8-18 31,000 60,000 3,100 16,000 10,100 BDL 1/17/2007 8-18 DRY DRY </td <td>GPW-6</td> <td>1/17/2007</td> <td>10-20</td> <th>Product</th> <td>Product</td> <td>Product</td> <td>Product</td> <td>Product</td> <td>Product</td> <td>Product</td>	GPW-6	1/17/2007	10-20	Product	Product	Product	Product	Product	Product	Product
1/17/2007 8-18 31,000 60,000 3,100 16,000 16,000 110,100 BDL 1/17/2007 8-18 DRY PRY PRY PRY PRY PRY PRY PRY PRY PRY <t< td=""><td>GPW-7</td><td>1/17/2007</td><td>8-18</td><th>16,000</th><td>39,000</td><td>7,100</td><td>37,000</td><td>99,100</td><td>BDL</td><td>3,400</td></t<>	GPW-7	1/17/2007	8-18	16,000	39,000	7,100	37,000	99,100	BDL	3,400
1/17/2007 8-18 DRY DRY DRY DRY DRY DRY DRY DRY BDL 6,700 32,000 480 1/17/2007 10-20 13,000 11,000 1,300 DRY DR	GPW-8	1/17/2007	8-18	31,000	000'09	3,100	16,000	110,100	BDE	1,900
1/17/2007 10-20 13,000 11,000 1,300 6,700 82,000 480 1/17/2007 10-20 DRY PRY PRY PRY DRY PRY P	6-W4-9	1/17/2007	8-18	DRY	DRY	DRY	DRY	DRY	DRY	DRY
1/17/2007 10-20 DRY DRY <th< td=""><td>GPW-10</td><td>1/17/2007</td><td>10-20</td><th>13,000</th><td>11,000</td><td>1,300</td><td>6,700</td><td>32,000</td><td>480</td><td>009</td></th<>	GPW-10	1/17/2007	10-20	13,000	11,000	1,300	6,700	32,000	480	009
1/17/2007 10-20 29.0 BDL BDL BDL BDL C9.0 6.4 1/17/2007 12-22 Product Produ	GPW-11	1/17/2007	10-20	DRY	DRY	DRY	DRY	DRY	DRY	DRY
1/17/2007 12-22 Product Product <t< td=""><td>GPW-12</td><td>1/17/2007</td><td>10-20</td><th>29.0</th><td>BDL</td><td>BDL</td><td>BDL</td><td>29.0</td><td>6.4</td><td>9.1</td></t<>	GPW-12	1/17/2007	10-20	29.0	BDL	BDL	BDL	29.0	6.4	9.1
1/17/2007 12-22 Froduct Product Product Product Product Product Product Product Product 1/17/2007 12-22 18,000 37,000 3,500 18,700 77,200 1,400 1/17/2007 12-22 2,800 44,000 3,600 18,900 69,300 BDL 1/17/2007 12-22 1,400 11,000 960 5,100 18,460 BDL 1/17/2007 12-22 2,000 5,300 950 4,200 12,450 BDL	GPW-13	1/17/2007	12-22	Product	Product	Product	Product	Product	Product	Product
1/17/2007 12-22 580 3,100 900 4,800 9,380 BDL 1/17/2007 12-22 18,000 37,000 3,500 18,700 77,200 1,400 1/17/2007 12-22 2,800 44,000 3,600 18,900 69,300 BDL 1/17/2007 12-22 1,400 11,000 960 5,100 18,460 BDL 1/17/2007 12-22 2,000 5,300 950 4,200 12,450 BDL	GPW-14	1/17/2007	12-22	Product	Product	Product	Product	Product	Product	Product
1/17/2007 12-22 18,000 37,000 3,500 18,700 77,200 1,400 1/17/2007 12-22 2,800 44,000 3,600 18,900 69,300 BDL 1/17/2007 12-22 1,400 11,000 960 5,100 18,460 BDL 1/17/2007 12-22 2,000 5,300 950 4,200 12,450 BDL	GPW-15	1/17/2007	12-22	280	3,100	006	4,800	9,380	BDL	970
1/17/2007 12-22 2,800 44,000 3,600 18,900 69,300 BDL 1/17/2007 12-22 1,400 11,000 960 5,100 18,460 BDL 1/17/2007 12-22 2,000 5,300 950 4,200 12,450 BDL	GPW-16	1/17/2007	12-22	18,000	37,000	3,500	18,700	77,200	1,400	1,800
1/17/2007 12-22 1,400 11,000 960 5,100 18,460 BDL 1/17/2007 12-22 2,000 5,300 950 4,200 12,450 BDL	GPW-17	1/17/2007	12-22	2,800	44,000	3,600	18,900	69,300	BDL	1,600
1/17/2007 12-22 2,000 5,300 950 4,200 12,450 BDL	GPW-18	1/17/2007	12-22	1,400	11,000	096	5,100	18,460	BDL	520
	GPW-19	1/17/2007	12-22	2,000	5,300	950	4,200	12,450	BDL	580

Notes:

Tathe Cyts

BDL = Below Practical Quantitative Limits
 µg/l = micrograms per liter
 MTBE = Methyl-Tertiary-Butyl Ether

4. Product = Free Phase Product Detected

P.O. Box 37698 Raleigh, North Carolina 27627 (919) 349-6237 (Phone) (919) 233-9454 (Fax)

May 5, 2009

Lyle H. Lee Environmental Project Manager GS2 Engineering & Environmental Consultants 241 Business Park Boulevard Columbia, South Carolina 29203

Dear Mr. Lee:

Geo Solutions Limited, Inc. (Geo Solutions) is pleased to submit this report to GS2 Engineering & Environmental Consultants (GS2) for a geophysical survey in support of a continuing environmental cleanup program at former Columbia Maintenance facility, UST# 07359 located at 3736 Marsteller Drive, Columbia, SC

Background

GS2 has been contracted to perform environmental services at a contaminated soil and groundwater site. The site is a former Columbia Maintenance facility which performed various maintenance operations on vehicles, motors, and other equipment. The facility also provided fueling services for various motors and vehicles.

GS2 is interested in locating subsurface conditions that may influence the design of clean-up at the site.

Geo Solutions was hired to provide geophysical services to evaluate the presence or absence of underground storage tanks, and if possible, identify the horizontal extent of affected soil and groundwater.

Investigation

Geo Solutions completed a two-phase geophysical survey of the site:

1. A Multifrequency Electromagnetic Survey (EM) was conducted along north-south profile lines across portions of the property lying within a chain-linked fence (Figure 2). The EM profile lines were spaced on a5-ft interval and samples were collected approximately every 1-ft along each of the profile lines. During the completion of this geophysical survey field notes and photographs were recorded indicating the location of any surface features, such as manholes, debris, and surface conditions, which may assist in the identification of any observed geophysical anomalies.

2. Ground-penetrating radar (GPR) profiles were completed across portions of the property (Figure 5). The purpose of the GPR investigation was to locate the former USTs and to evaluate the quality of site wide data that could be obtained should additional work be required.

Multifrequency Electromagnetic Survey

Geo Solutions utilized a GEM-2 multifrequency electromagnetic profiler (EM) to obtain information concerning the electromagnetic properties of the material composing the upper 20 ft of sites soil. EM surveys have been shown to be very effective at evaluating the presence of electrically conductive and non-conductive material. Geo Solutions performed the EM survey at four electromagnetic frequencies (1470 Hz, 5130 Hz, 9990 Hz and 19950 Hz). We reviewed the results from each of these Frequencies and found that the 19950 Hz showed the best response. As such, we have produced two figures that illustrate the 19950 Hz in-phase (metal detection) and quadrature (conductivity) mode results (Figures 3 and 4, respectively).

Ground-penetrating Radar (GPR)

Geo Solutions utilized a GSSI Model 3000 GPR unit equipped with a 400 and 200 MHz antenna mounted on a three wheel cart. A limited GPR survey was performed across the west, central east portion of the site (Profiles 1, 2, 3, and 4 in Figures 5 and 6). In each case the depth of detection varied from 4 feet to approximately 10 feet in depth bls. Here Geo Solutions identified six prominent features (which have been identified in Figure 6) and include:

- 1. Numerous shallow utilities traversing the site.
- 2. Potential buried manholes and drain lines
- 3. Evidence that fuel hydrant lines leading from former and existing USTs are present, and
- 4. Evidence that at least one large UST remains in place (possibly closed in place).
- 5. Evidence of rock fabric structures in the subsurface. These structures are represented by inclined GPR reflector surfaces to a depth of more than 10 feet.
- 6. Areas of shallow fill material (non-metallic) probably placed during the construction of the facility.

Results

The following is a summary of our results:

Based on the results of the EM and GPR survey Geo Solutions has located the
position of a suspected UST (approximately 8ft in diameter) the length of the
UST could not be determined because of limited access to the long axis of the
tank but probably exceeds 10 feet in length. Below is a cross and longitudinal
section GRP profile over the suspected UST.

GPR PROFILES ACROSS SUSPECTED UST

- The EM survey data was also reviewed for the presence of other buried material. Here we did not find any widespread areas that may represent buried metal debris or drums. However we did identify a single EM anomaly that appears to be buried approximately 1 ft deep and was about 2-ft in diameter (this appeared to be a drain or manhole cover). Leading away (east) from this feature was a single pipe of unknown diameter (see Figure 3, located north and west of Monitoring Well 10).
- Based largely on the EM survey, Geo Solutions identified a number of suspected underground utilities (noted as black dashed lines in Figures 3 and 4) traversing the site.
- Additionally, Geo Solutions noted in Figure 4, and summarized in Figure 7. Here, Geo Solutions has postulated the extent of soil and shallow groundwater that shows evidence of change conductivity. Changes in the soil and groundwater conductivity may reflect the extent of various types of contamination, and my represent the reaction hallow surrounding the contaminant plume.

Recommendations

We recommend that the findings of this report be reviewed with the results of a new environmental drilling program and be used to identify potential new geophysical surveys, if any.

Geo Solutions is proud to have been a part of this environmental assessment. Please give me a call should you have any questions concerning the above.

Very truly yours,

GEO SOLUTIONS LIMITED, INC.

Ronald A. Crowson, Geophysicist

Figures 1 through 7 attached

FIGURE 1

SITE MAP - EXTENT OF GEOPHYSICAL SURVEY
COLUMBIA MAINTENANCE FACILITY

APPROXIMATE LOCATION OF
 MONITORING WELL

FIGURE 5

